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Abstract

To some Yang—Baxter braidings of Hecke type we assign algebras called braided non-commutative
spheres. For any such algebra, we introduce and compgs&nalog of the standard pairing Ind :
Ko(A) x K°(A) — Z called a non-commutative index. Unlike the standard non-commutative index,
our g-analog is based on the so-called categorical trace specific for a braided category in which the
algebra in question is represented.
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1. Introduction

In K-theory there exists the well-known pairing ((23]):
Ind : Ko(A) x K°(4) — Z, (1.1)

whereA is a given associative algebr&(A) is the Grothendieck group of the monoid
of its finite dimensional representations, akig A) is the Grothendieck group of classes
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of one-sided projectivd-modulest (Observe that according to the Serre—Swan approach
such modules are considered as appropriate analogs of vector bundles on a variety.) We
will only deal with the finite dimensional representations of algebras in question taking the
category of finite dimensiondl(si(n))-modules as a pattern. In this sense our setting is
purely algebraic. This is the main difference of our approach from that based on the Connes
spectral triples in which a considerable amount of functional analysis is involvefd [cf.
where the quantum function alge§&,(2) is studied from this viewpoint).

Any one-sided projective module can be identified with an idempeteriflat(A) where
Mat(A) stands for the inductive limit of the algebras @) of n x n matrices with entries
from A equipped with the natural embeddings Mat) < Mat,1(A).

Given a representatiomy : A — EndU) and an idempoterd € Mat(A), the pairing
(1.1) is defined by

Ind (e, 7y) = tr(mu(tr €)) = tr(wy(e)), (1.2)

wherery is naturally extended to Mad(). (It is not difficult to see that Inde( /) does not
depend on a representative of a class fkgiA) or K°(A).)

In what follows the pairing (1.1) will be calleithe non-commutativéNC) index

In this paper we introduce a “braided” version of the NC index. This version is based
on the so-calledategorical tracgseeSection 2 and motivated by the “braided” nature of
the algebras we shall deal with. These algebras are quotients of some braided analogs of
enveloping algebra&(gl(n)) andU(s/(n)) and are thought of as braided NC counterparts
of orbits insl(n)*. We calculate the braided NC index on a particular class of such type
orbits.

Before introducing the algebras mentioned above let us briefly describe the braided
categories in which the algebras will be represented. Any such a category is generated by
a finite dimensional vector spateequipped with a map callealbraiding (morphisn):

R:V® 5 y®2 (1.3)
which satisfies the quantum Yang—Baxter equation:
R12R23R12 = R23R12R23, R12=R®id, Rz =id ® R. (1.4)

Besides, we will suppodeto be of the Hecke type. This means that the braittisgtisfies
the followingHecke condition

(gid— R)(¢g tid+R)=0, geK. (1.5)

HereafterK stands for the ground field (usually but sometimegR is allowed) and the
parametey € K is assumed to be generic (bpt= 1 is permitted). The braidings of the
Hecke type will be also calledecke symmetries

Let C = C(V) be the category generated by the spddseeSection 3. The sets of its
objects and categorical morphisms will be denoted, respectively, b§)@b¢d Mor(). The
categoryU,(si(n)) — Mod of all finite dimensional modules over the quantum group (QG)
U,(sl(n)) serves as an example@({V). In this case the spadéis the fundamental (vector)

1 Throughout the paper all projective modules are supposed to be finitely generated.
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module, the braiding is the Drinfeld—Jimbdr-matrix and the categorical morphisms are
linear maps commuting with the action &f, (s/(n)).

Under some additional conditions &{seeSection 2 the braided categories in question
arerigid (for the terminology the reader is referred2). This means that for arty € Ob(C)
there existsU; € Ob(C) (resp.U}* € Ob(C)) for which one can define a non-degenerate
pairing:

UUf > K (respUj ® U — K)

and this map is a categorical morphism. The spatéresp.U;") is called theright (left)
dual space tdJ. Therefore, for any/ € Ob(C) the space of its right (resp. lefijternal
endomorphisms

End(U) U @U,  (respEnd(U) £ U ® Uy) (1.6)

is also contained in OBj.
Then, inC we define an important categorical morphism

trg : Endi(U) - K, e=1I,r

calledthe categorical traceThe super-trace is an example of such a categorical trace.
Namely, in super-algebra and super-geometry this trace replaces the classical one. For a
similar reason, dealing with a braided category, we make use of the categorical trace specific
for this category.

Now, let us pass to algebras in question. Assume for a momeny thdt. This means
that our braidingR becomes involutiveR? = id. For such a braiding there exists a natural
way to definea generalized Lie bracket

[.1g: End(V)®? - End(V), e=I.r (1.7)

(cf.[10] for detail). Being equipped with such a bracket, the space(Endfor definiteness
we sete = |) becomesa generalized Lie algebrdt will be denotedgiz(V). (Note, that a
similar generalized Lie bracket can be defined in [Etidi for any objectU € C(V).) For
instance, a super-Lie algebra is a particular case of a generalized one.

Moreover, for the aforementioned categorical trace we have

tre[X,Y]g =0, X,Y e End(V) (1.8)

and the subspaceg (V) of all traceless elements is closed with respect to this bracket. Thus,
the spacelg(V)is alsoa generalized Lie algebra hen their enveloping algebréggiz(V))
andU(slg(V)) can be defined by systems of quadratic-linear equations. Furthermore, they
becomebraided Hopf algebrasbeing equipped with an appropriate coproduct, antipode
and counit (cf.[25] for the definition). On generator® € gir(V) (or X € sig(V)) this
coproduct has the classical form:

AX)=X®1+1QX. (1.9)
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By means of the coproduct (which gives rise to a braided version of the Leibniz rule) we
can construct an embedding

End(V) — End(V®™), vm. (1.10)

Restricting these maps on the subspaces associated with the Young diagrams (the corre-
sponding Young projectors can be constructed for any involutive braiding) we get a family

of irreducible representations of the generalized Lie algety@’). Then considering all

their direct sums we get a category of finite dimensional representations of the algebra in
guestion similar to that of (p)-modules wherg = rk(R) (seeSection 3. The main differ-

ence between the latter category and a braided one consists in traces. When considering the
algebraU(glr(V)) (or U(sig(V))) with the aforementioned category of finite dimensional
representations it is natural to use the corresponding categorical trace in order to define all
numerical characteristics (dimensions, indices, etc.).

It is this scheme that is realized in the present paper. However, here we deal with a
more interesting (and more difficult) case of algebras and categories associated to some
non-involutive Hecke symmetries. In this case it is not evident which algebras should be
taken ad/(g/r(V)) andU(slr(V)). The matter is that a direct generalization of the bracket
(1.7) to a non-involutiveR leads to “enveloping algebras” which are not flat deformations
of the classical ones even R is a deformation of the usual flip. In other words, the
dimensions of the homogeneous components of the corresponding graded algebra differ
from their classical analogs.

Nevertheless, there exist algebras (denoted belofrasandSLy ;) possessing good
deformational properties and playing the role of braided analogs of enveloping algebras
U(gl(n)) andU(sl(n)), respectively (though apparently they do not look like the usual en-
veloping algebras). They can be described in terms ofntbdified reflection equation
(mRE). This equation can be defined for any braiding; for involui¥eeads to the afore-
mentioned enveloping algebréigg/z(V)) andU(siz(V)). The algebragy , andSLy, , are
presented in the next section.

In the case related to the QG (si(n)) (in the U,(si(n)) case for short) these alge-
bras are one-siddd, (s/(rn))—modules unlike th&/,(s/(n)) themselves which is a two-sided
U,(sl(n))-module. Using the results [#4] it is possible to show that ariy,, (sI(n))—module
becomes asL, ,—one. For the Hecke symmetry coming fréfy(s/(n)) the corresponding
categoryC(V) is the representation category of this QG and all its objects can be equipped
with an action of the algebr&Ly ,. The family of all representations of the algelstay ,
is, however, larger than that &f,(s/(n)). We constrain ourselves to considering only fi-
nite dimensionalSLy, ,—representations which atg,(s/(n))-modules and are equivariant
(covariant) with respect to the action of the QG.

But in general case we do not have such a useful tool as the QG. So, we modify the
notion of equivariant representation in order to adapt it to a more general setting.

In the case rkk) = 2 we equip the categorg(V) with an equivariant action of the
algebraSLy, ,. Then we introduce braided NC spheras a quotient of this algebra (we
get it by fixing a value of a quadratic braided Casimir element) and calculate the braided
NC index for it. In theU,(sI(2)) case the braided NC sphere is also cafhedquantum NC
sphere
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The quantum sphere is close to the known Pedlghere. However, while the Poslle
sphere isU,(su(2))-homogeneous space and is introduced via some reduction from its
dual, our construction is defined as an appropriate quotient of the mRE algebra. As a
consequence, the representation theory of the Bagjdaere developed if27] differs
drastically from that oSy, ,.

Note, that the NC index on the Podlsphere (namely, a particular case called equatorial
sphere) was computed in the w@tll6] with the use of the representation theory fr{2],
the trace defined if26] and idempotents introduced[ith7]. Similar computations for other
Podle& spheres were announced18].

In contrast, our method of constructing idempotents on the braided (in particular, quan-
tum) NC spheres makes use of a braided version of the Cayley—Hamilton identity for some
matrices from Mat(y ,). This identity is a very powerful tool: it allows us to construct a
family of projective modules for a big set of algebras. In particular, we get the so-called
guantum NC spheres which are two-parameter deformations of the usual sphere. Setting
g = 1 we get the standard NC (fuzzy) sphere and the idempotents on it considered earlier
in [14]. Besides, in contrast witli6] we use the equivariant representation theory (similar
to that ofsi(2)) and the categorical (@f)trace instead of the usual oRe.

The paper is organized as follows. In the next section we define the categories and
algebras we are dealing with. 8ection 3we introduce and compute the braided version of
the NC index. InSection 4we consider the quantum sphere as an example of our general
construction. IrSection Bve discuss some aspects of our approach. In particular, we present
a treatment of the NC index and itsanalog for the algebras in question as a quantum
counterpart of the Euler characteristic of vector bundles on the usual sphere.

2. CategoriesC(V) and related algebras

We begin this section with a short description of the categogyC(V) generated by a
finite dimensional vector spadéequipped with a Hecke symmetRy This category forms
a base of all our considerations, for its detailed descriptiorilsHe

Given a Hecke symmetrir, one can connect with it a “symmetric” (resp. “skew-
symmetric”) algebrai, (V) (resp.A_(V)) of the spacé/ defined as the quotient

(V) (V)
A(V) = {m} <respA_(V) = {m})

HereT (V) stands for the free tensor algebra. L&t (V) be the homogeneous component
of A+(V) of degreek. If there exists an integgy such thata* (V) is trivial for k > p

and dim@” (v)) = 1, thenR is calledan even symmetrgndp is calledthe rankof R:

p = rk(R). Hereafter the symbol “dim” stands for the classical dimensions. In what follows
all Hecke symmetries are assumed to be even.

2 Inthe casey # 1, k = 0 we get an algebra which is in a sensecbmmutative”. Our method of constructing
projective modules is still valid for it. However, we do not consigéndex for this algebra. Our treatment of this
“g-commutative” case is given i@ection 5
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Using the Yang—Baxter equation (1.4) we can extend braiding (1.3) onto any tensor

powers ofV
R: VO @ V& 5 yon g yem (2.1)

(as usual, we pu¥®? =K and (19 x) < R=x® 1 (x®1) 9 R=1Qx, Vx € VO™,

(Hereafter the notation <1 P (resp.P t> x) stands for applying an operatérto a vector

x € V so that the spact becomes a right (resp. left) module over the operator algebra.)
For an arbitrary fixed integer > 2 we consider partitions - m

)"Z()"lv)\'za"v)\'k)? )\'12)\'22.2)\'1(>03 )\'l+‘+)"k=m

(kis calledthe heighof 1). There exists a natural way to assign a spgcéquipped with
a set of embeddingg, — V®") to any partition.. For this one should use tlgeanalogs
of Young projectors well known in the theory of symmetric group [t1]). By definition
the space¥, are simple objects of the categatywe will motivate this definition below).
All other objects are the direct sums of the simple ones. Upon assuriiode even of
rank p we can confine ourselves to partitions such that p since any spac®, with 1
such that,1 > O vanishes.

Let us describéhe categorical morphismas C. The terncategoricalemphasizes the dif-
ference among morphisms from MGj@nd “internal endomorphisms” which are elements
of End.(U) € Ob(C),e =, 1.

We distinguish categorical morphisms of two kinds. Categorical morphisiieedirst
kind are the linear mapg®"™ — V®";m > 0 coming from the Hecke algebra, as well as
their restrictions to any object embedded im&". Recall, that the Hecke algebFs, can
be represented in®" by means of the Hecke symmefy

The categorical morphismaf the second kindirise from a procedure of canceling
columns of heighp in the Young diagram corresponding to a given partitiofihe proce-
dure is as follows. Denote hya generator of the one-dimensional spaégV) (we callv
the associated determingntf one fixes a basiéx;, 1 < i < n = dim(V)} in the spacé/,
thenv can be represented in the form

V= vll~-'lpxl-l ® oo ® xi,;‘

Hereafter the summation over repeated indices is always understood. Theuensais

one of the two structure tensors that define the matrix of the highest order antisymmetrizer

(projecton)A() : v®P — AP (V) inthe basisi, ® - - - ® x;, of VP
APRYL Y = i i, o7 (2:2)

As one can showj the associated determinanpossesses the property
V)< R=@W®x) and PRXx)<IR=(E"®v) VxeV

where the correspondences~> x' andx — x” are some linear mapg — V. Demand

them to be scalar (multiple of the identity map) and equal to each other. In other words, let
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there exists a nonzeroe K such that
x®V)<R=a(v®x) and EQx) < R=a(xQv).

The Hecke symmetriR satisfying such a requirement will be calledmissibleln this case,
by settingR = a—1R we have

(V) <R=@W®x), (@RX)<IR=(xQU). (2.3)
Thecanceling a columiis defined as a map

A2V L K y) =1

Due to (2.3)y obeys the following condition
Ro(d®y) = (y ®id)o R. (2.4)

The above relation is valid also for the map? (inverse toy). By definitiony andy 1
are the morphisms of the second kind. Any product (compositforng of morphisms of
the both kinds givea categorical morphisrby definition. Also, any tensor produ¢t® g
of categorical morphisms will be a categorical morphism.

Remark 1. Condition (2.4) (in a little bit more general form) is sometimes included in the
system of axioms for braided categories (factoriality condition31fa braiding satisfying
such a condition is calledatural.

In what follows we assumR to be admissible. Then the condition on the height of
can be strengthenetl:< p. This means that we cancel all columns contairprimpxes.

Let us emphasize that for an objeet with a fixed embeddingV;, — V®" a map
V). — Vi is a categorical morphism if and only if it is a scalar map. This is the reason to
call these objectsimple Such an observation plays an important role in what follows. If a
mapé : U — U, U € Ob(C(V)) is proved to be a categorical morphism antlitioes not
contain isotypical components (i.e., simple objeéisimbedded inU in different ways)
then on each simple componentlthe mapt is scalar.

The category thus introduced is a monoidal and quasitensor one whose braidings are
restrictions of maps (2.1) onto the simple spatgsand their direct sums. We call such
a categonybraided Note that its Grothendieck (semi)ring is isomorphic to that/¢p)-
modules where = rk(R).

Moreover, the corresponding categdtyis rigid, that is for anyU € Ob(C) the dual
spacedJ;, e =r, | (right and left) are also contained in @Y( In particular, one can show
thatA‘_’_l(V) is the dual (right and left) o¥. This means that there exist non-degenerate
pairings

AP V)eVv > K and Ve AP YY) > K (2.5)
which are categorical morphisms.
Let {xi} (resp.{x;}) be the dual basis in the right (resp. left) dual spacé to

<-xl'7-x¥> 23{, (X{,)Cl'> 28{.

(2.6)
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The dual basise{sd} and{xf} can be expressed in the form
xb= ity @@ Xa, 15 xf =0l ® - ® Xa, 15 (2.7)

hence(x} € AP7Y(V), e =r, 1. Now, pairings (2.6) can be explicitly constructed by means
of the categorical morphism. As a consequence, pairings (2.6) become categorical mor-
phisms justifying the identification oj\’,’_l(v) with the dual space oV (for details cf.
[11]).

Introduce now aategorical tracewhich will play the central role in all our subsequent
considerations. Itis defined as a properly normalized categorical morphisgtiBne- K.
For details the reader is referred[fid] and we only briefly outline this construction.

For any admissible Hecke symmetRythere exists an operat@ that we call “inverse
to Rby column”, i.e.,

RO = 85] < QLR = 818,

WhereR{f is the matrix of the Hecke symmetry in the basis x;:
(xi®x;))<R= Rgxk ® x;.

Consider the matrices

Bl=0l =0l
Evidently, they satisfy
BiRY =5/, RPCo=5]. (2.8)

Extending these matrices to any objegsin a proper way we get the matricés and
C,. such thathe categorical tracérz on the space En(V,) (resp. End(V,), see (1.6)) is
defined as follows

trgX =tr(B, - X), VX € End(V;)
(resptrpY =tr(Cy - ¥), VY € End(Vy)). (2.9)

Here tris the usual matrix trace aidresp.Y) is the matrix of the linear operatdf, — V;,
corresponding to an elemekite End.(V,) (resp.Y € End(V,)).

The matricesB; and C, are constructed in such a way that the niap> trpX is a
categorical morphism and, besides, tiagegorical dimension

dimg(U) = trgidy YU € Ob()

is an additive-multiplicative functional on the Grothendieck (semi)ring. Then for any simple
objectV, one gets

dimg(Va) = sl L g3, ... ¥ P, ¢+ 7P),
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wheres;, is the Schur function i variables. A proof of this fact is given if19,11] (in
another setting an equivalent formula can be also foufidlipy.
As a consequence of (2.7) the maps betwggmand V;* defined on basic elements by

x> X B x> x0CL (2.10)

belong to Mor(). Therefore, the same is true for the maps defined via
1+ x'B. ® x;, 1> x ®x4C
since they are compositions of the map?

w—l . .
> v=xQx =x ®x.

and morphisms (2.10).

Our next aim is to introduce some associative algebras naturally connected to the cate-
gories involved. We consider these algebras as braided analogs of the enveloping algebras
U(gl(n)) andU(si(n)). Motivation will be given later.

As a starting point of our construction we introduce eleml;/nis x; ® x{ and form the
matrix

L=, 1<ij<n=dm®) (2.11)

where the lower index enumerates rows and the upper one enumerates columns.Rssume
to be an admissible Hecke symmetry and impose the following relations on the free algebra,

generated by all the elemenl)fs
RL1RL1 — L1RL1R — (RL1 — L1R) =0, whereL1 =L ®id, he K (2.12)

or, explicitly,

Rl Ry s — I RGS21 RS2 — B(REZ 1 — I RIP) = 0
We call this relation thenodified reflection equatioqimRE) and the corresponding algebra,
Lp, 4, the modified reflection equation algebfeor any Hecke symmetig with g # 1 this
algebra can be obtained from the non-modified one (corresponding:t0) by a shift of
generator — I/ — a8 idwitha = k(g — ¢~1)~1. Thisimplies that fog # 1 the algebras
Ly, , are isomorphic for anjt to each other. Ay = 1 these algebras are isomorphic iff the
corresponding parametefisare not equal to zero. The corresponding isomorphism can be
obtained by rescaling the generators.

Now, consider the maps Spﬁ,ﬁ(—> K and Spari() — Span({ ®k defined on the basic
elements as follows

s and !> 1 @1%20 @1

k-1

(2.13)

(in a matrix form they can be written ak — id and L — L®k, respectively) which
evidently belong to Moxf). In what follows the matriced®* whose entries are con-
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sidered as elements of the spacg, (or SL;, defined below) will be denoted
Lk,

Proposition 2. Let us sei{ > xp = xiBi. Then the image of the left-hand side(2f12)
under this map is equal t0if we puti = 1. Hence we have a representation

m1: Ly — End(V), h=1

Proof. Straightforward calculations. Suffice it to apply the left-hand side of (2.12) to an
arbitrary element of and use property (2.8) of matr&x O

In End (V) we can choose the natural bans: X ® xlj
hlj > xp = 8‘]:xi.

Let us consider the map Sp%{r)(—> End (V) defined on the basis as follows
1/ > hiBj.

It is a categorical morphism. Upon identifying the elemdﬁtand their images we can
consider the se{rl{} as another basis in the space E#. (Note, that in the basiB{ the

representation; becomes tautologicaztl(hlj) = h{ andnl(h{), being realized as a matrix,
has the only nonzera, (j)th entry which is equal to 1.) _
It is worth emphasizing a difference between these basises. For tmi,‘}sehe product

h! @ hl — 8lht

is a categorical morphism while @' } the maps given in (2.13) are categorical morphisms.

We denote the space Bifd) by gir(V) and now describe its subspace of traceless
elements. For any rank the spacelr(V) decomposes into the direct sum of two simple
spaces, one of them is one-dimensional. This one-dimensional component is generated by
the element:; = x; ® x; = v or, equivalently, byl = C/I;. The elements of other simple
component of EndV) are calledhe traceless elements the sequel such a space will be
denoteds/z(V). Moreover, we define the algeb&Ly, , as the quotienSLy, , = Ly 4/1{1}.

Propositions 2, 4 and Below suggest a new way of constructing the representation
theory of the algebragy , andSLy , in the case rkg) = 2. In contrast with the usual
method valid in the case related to the QG when the triangle decompositiomtaf the
product of L™ and L~ is used, our approach works in the general setting (for arbitrary
admissible Hecke symmetry).

Observe, that all representations in question are equivariant in the sense of the following
definition.

Definition 3. Let A be eitherly, , or SLp , andU € C(V) be an object with an associative
productU ® U — U which is a categorical morphism (e.@/,= End.(W),e =r,l or a
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direct sum of tensor products of similar spaces). We say that a map
gy A—>U

is an equivariant representatiaifit is a representation (i.e., an algebra morphism) and its
restriction toglg(V) (resp.sig(V)) is a categorical morphism.

Our next step is to define representation£gf, in all simple space¥).. We constrain
ourselves to the simplest caseRj(= 2. In this situation the simple objects®ére labelled
by partitions of height 1A = (m). The corresponding Young diagram has only one row
of lengthm. For brevity, we will writeV{,,) instead ofV;, » = (m). Note, that in this case
Vimy = AL(V).

Upon fixing a basis in the spadf,,), we can identify EndV{,,)) with the matrix algebra
Mat,,, (K), n,, = dim(V(,,)). The quantities:,, depend on a concrete form of the initial
Hecke symmetnR. In the U,(sl(2)) case we have,, = m 4 1 similarly to the classical
(g = 1) case. However, for the so-calledn-quasiclassicaHecke symmetries (cf14])
these quantities differ drastically from the classical ones. In general the quapnigequal
to the coefficient at” in the development of the rational function€lnz +2)~1 in a
series, whera = dim(V) and rkR) = 2.

Now, we pass to higher representations of the algélra In order to construct them
explicitly we take into account thaf,,,) = A" (V) is the image of the projection

py o veEm e,

where P! is the g-symmetrizer (a particular case gfanalogs of the Young projectors
discussed below). Then to an arbitrary elemerd Eng (V) we assign the eleme,) €
End (V) by the following rule

Xy > & = ¢* " [ml PP (X > g), Vg e AT(V). (2.14)

HereX() = X ® idpn—gyand n], = (¢" —q¢™™)/(q — g~ 1) is theg-analog of the integer
m. Note that the map

Ayt End(V) = End (Vim)), X=X (m) (2.15)

is a categorical morphism due to the structurePff. Composingr; with A, we get the
map

T+ Lrg — ENA(Vim)).

Proposition 4. The image of the left-hand side(@f12)under the map,, is equal to0 at
h = 1. Sq we get a representation

Tt - Lrg — ENd(Vim)), h=1

Proof. This proposition can be deduced from the pgaéj. One of the main results of
that paper consists in constructing representationg — End(V®™) through the basic
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representatiotr; described irProposition 2Let us consider the maps
pm * Lpq — EndV®"),

such that the matrices corresponding to the generators are defined as follows

m—1
Py =mi(t)) @ 12D 4 3" R I ) @ 19 VIRGE . (2.16)
s=1

Herel is the unity matrix, the superscriptt means the matrix transpositioﬂ?@f’l)db) stands
for the following chains oR-matrices

-1p-1
1 R,”R, ;..

RY a<b
R by =

(a> RARY...R;Y a>b

Then as was shown {i30] the mapsp,, define representations of the algebir;gq.:"
The module/®™ is reducible. It decomposes into a direct sum of irreducible submodules

V,, parameterized by Young tableaux corresponding to partitidng:. These submodules
are extracted by the action gfanalogsP;' of Young projectors. In the case under consid-
eration we only need the projectsf’. Taking into account the property gfsymmetrizer

PR =RIPT =¢g7PT, 1<ism-—1
and the following consequence of the definitiorgaiumbers

m—1

Z q—2s — ql—m[m]q

s=0

one can easily see that the mgp coincides withP" p,, P'. This completes the proof.[]

Remark 5. If rk(R) = 2, itis easy to introduce a braided analog of the Lie bracket in the
spacesig(V). Taking into account the decomposition

sIR(V)®? = Viay ® Vi2) ® V(o)

we set [, ] : Vig) ® Vo) — 0 and require the map [] : V(2) — siz(V) to be a categorical
morphism. This requirement defines the mag piniquely, up to a factor. This bracket
can be naturally extended tdr(V) by the requirement [x] = 0 for anyx € gir(V). (A
g-counterpart of the Lie algebs#() has been defined ii24].)

3 Note, that ifR is involutive and henc&k~1 in (2.16) can be replaced by then (2.16) becomes a direct
consequence of the coproduct (1.9) and defines the embeddings (1.10). For non-infalhéweproduct (1.9)
fails but formula (2.16) remains valid.
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Having introduced such a bracket, we can treat the algéifg, as the universal en-
veloping algebra of the correspondingiLiie algebra” in a standard manner (the parameter
h depends on a normalization of the bracket). Similarly, the alg€racan be treated as
the enveloping algebra @iz (V).

However, we prefer to work without angLie algebra” structure. Similarly to the usual
enveloping algebra, the algeh$z;; , has the following properties. It is generated by the
spacesig(V) (more precisely, it is the quotient of the algelitélz(V)) modulo an ideal
generated by some quadratic-linear terms). Moreover, its representation theory resembles
that of U(sl(2)) and, being constructed via the mapg, is equivariant. This is the reason
for considering the algebi&Ly , as a proper “braided analog” of the enveloping algebra
U(sl(2)) (and similarly, the algebrdy, , is treated as the enveloping algebrabf(V)).

The representations of the algelsiéy, , can be easily deduced from thoses ;. To
construct them, we set

l>x=0, Vxe Vp

and preserve prolongation (2.14) for the elements of the traceless comphi{&ht

Proposition 6. Thus defined maps are representations of the algéifta, with some
h#0.

We will refer to these representations of the alge®€g , assl-representationand keep
the same notation,, for them:r,, : SLp , — End(V(m)).

The exact value of in Proposition Gs not important. Given a representation(dy, ,
with someh # 0, we can get a representation with anothegnormalizing the generators in
an appropriate way. In thé, (s/(2)) case this method of constructing representation theory
of the algebrasLy , was suggested ifp].

Up to now we considered the “left” representations of the algebras in question but we
need also the “right” ones. Such representations are given by appropriate maps

Span({) — End (V)

Note, that we do not specify which dual space — right or left — is used in the formula
above. In fact, it is of no importance due to (iso)morphisms (2.10). The right representation
7 Of L 4 (@ndSLy, ) in the spaced’} (V/*) is introduced in the standard way as the map
T - Lp,qg = End (A (V))) given by the formula

(g Amm(X), f) = (8. tm(X) > f) forany fe AL(V), g€ AL(V]).

This construction is valid for an admissible Hecke symmetry of arbitrary rank. The case
rk(R) = 2 which we are dealing with leads to additional technical simplifications. The point
is that in this case we can equip the spdaeith a non-degenerate bilinear for¥? — K
which is a categorical morphism. Explicitly, such a bilinear form can be written as follows

(xi,xj) = vi;l. (2.17)
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Here ||vl.;1|| is the matrix inverse tdv"/| which is invertible as has been shown[i0].
This form allows us to identifi{/ with V", e =r, | and, therefore, to define representations
T - Lp,qg = End(V(m)) and their sl-counterparts,, : SLp , — End(V(y)). Similarly to
all representations considered abaygare equivariant.
Now, we define our main object — the braided NC sphere — as a quotieiitpf.

Definition 7. Letrk(R) = 2 ando € SLj, , be a nontrivial quadratic central element (e.g.,

take Trr L2, where Tr; is defined in (3.9)). Fix € K. The quotientSLy, , /{0 — o} will be
calledthe braided NC spheri¢ i # 0 andbraided g-commutative spheiferi = 0.

The spectral decomposition of this quotient is similar to the classical case

SLpq

{o—a}

= ®; V2.

Here the parameteris assumed to be generic. Below we consider some polynomial iden-
tities (called Cayley—Hamilton) whose coefficients depend.dbemanding their roots to

be distinct, we get more concrete restrictionsoonn the particular case of the quantum
sphere the elementwill be specified inSection 4

3. Index via braided Casimir element

In [13] we suggested a way of constructing a family of projective modules over the RE
algebra (modified or not) by means of the Cayley—Hamilton identity. As was shddAgJin
the matrixL satisfying (2.12) with any even Hecke symmeRgbeys a polynomial relation
p—1
L+ o, i(L)L'=0, p=rk(R), (3.1)
i=0
where the coefficients; (L) belong to the centeZ(Ly, ,) of the algebreCy, ,. This relation
is calledthe Cayley—Hamilton identity
Let us consider the quotient algeméq = Ly 4/{1%}, where{X} is the ideal generated
by the elements

72— x(@), z€Z(Lny) (3.2)

and
X Z(Lpy) > K

is a character of(Lp, ;). After turning to the quotient algebz%’q, the coefficients in (3.1)
become numerical
p—1

L?+Y aLl' =0, a = x(op-i(L)) (3.3)
i=0

(ina particular casg(l) = 0 we obtain a quotient a$£y, , denoted a§£g,q).
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Assuming the roots of the equation
p—1
w4y apn' =0
i=0

to be distinct, one can introdupddempotents in the usual way

L_ .
e=[]—E, o<i<p-1 (3.4)
ji M

If no charactely is fixed, then the rootg; can be treated as elements of the algebraic closure
Z(Lp,q) of the centeliZ(Ly, ;) (or Z(SLp,g) if x(I) = 0).

Besides the basic Cayley—Hamilton identity (3.1), we are interested in the so-called
derivedones which are valid for some extensions of the matfik3]. A regular way of in-
troducing these extensions can be realized via “a (split) braided Casimir element”. Note that
anon-braidedy = 1) version of split Casimir element was used in order to get characteristic
identities related to Lie algebras (f8] and the references thereihiRecently, it appeared in
a close context if22,28]where the so-called family algebras were introduced and studied.

Thebraided(split) Casimir elemenis defined to be

Cas= Y @ =Y ! ®1FC, € L1, ® Ly (3.5)
iJ ij
Its crucial property is that the map
K— Ly, ®Lpg 1+~ Cas (3.6)

belongs to Mor€). ThereforeCasis a central element of the categatyn the following
sense

(Cas®x) < R=x®Cas VxeU YU e Ob()

with R defined in the previous section. For the proof it suffices to observe that the above
relation is obviously valid for the unit oK, hence, forCas due (3.6) is a categorical
morphism.

From now on we shall deal with the case R(= 2. In order to get the initial matrik
as well as its higher analogs from the braided Casimir element, one should rbplace
End (V) in (3.5) with their imagearm(h;) in matrix realization.

Namely, consider the map

7@ =id @ 7 1 Lig ® Lig —> Lhg ®ENAVim))
= Lp,4 ® Mat,, (K) = Mat,,, (Lp,q)

4 Note that such characteristic identities were intensively studied by Adelaide school. For enveloping algebras
these identities can be thought of as specializations of the CH ones (and are in fact equivalent to them). Also, we
would like to mention the papef8] where characteristic identities are obtained for QG [@0iwhere a version
of the CH identifies is given for their dual objects (“RTT algebras”).
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and introduce the matrik ) in the following way

Liyy = 73(Cas),
whereL! stands for the transposed matrix.
Now, define the powers of the elemenfé)(Cas) as follows
(P(Cag)t =1 1 @mu(h'h). .. 7w(h'}) € Lng ® ENAVim))- 3.7)

1

In particular, form = 1 we have
(P(Ca9)? = 1] ® I,
(r(Cas)® = 181] @ ', € Ly, ® End(V), etc (3.8)

In more detail, the squararf)(Cas))2 arises from the following chain

1 @Dyl @ hiznit o 112 @

J1 i1 J1
lil ® hjl — lil ®le h./l i1"i2 2 i1'a
and similarly for other powers.

It is easy to see that the element

(#@(Ca9) € L1, ® ENd(Vim)) = L1, ® Mat,, (K) = Mat,,, (Lr.,)

is nothing but L’{m))‘. Remark, that thougiL! - Lt # (L?)!, we apply the transposition
operator to the matrixl((m))" as a whole and geﬁf,?)(Cas))". This implies that the matrix
Ly and the elemervt,(nz)(Cas) whose powers are defined by (3.7) satisfy the same CH
identity.

Now, we want to define a map which isgeanalog of the trace Mg} (L o) — Lp g
In general such a map depends on the way of realizing the algebrg (Mateither as
Ly, 4 ® Mat,,, (K) or as Maj,, (K) ® Ly 4.

We realize the algebra Mat(Lp, ) as Ly, ® Mat,,, (K) and define a map Frin the
following way

Trr : Lpy ® Mat,, (K) — Lp,, Trr = id ® trg, (3.9)
where trz is the categorical trace (2.9) and the space,Mi&) is identified with Eng(V;,,)).
In particular, we have

TrrL = Tar(lz)(Cas) = l{ ® trR(hi.) = ljcj. =1

In the U, (sl(n)) case the trace RiL coincides with thejuantum tracécf. [7]) which plays
an important role in the theory of the RE algebra.

Let us summarize the above construction once more. Given an admissible Hecke sym-
metryR, we introduce the catego6/as was shortly described 8ection 2and construct the
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morphism (categorical trace)gr. End(U) — K, U € Ob(C) which is defined byR. Then
with the categoryC we associate the algebss; , defined by system (2.12) and use this
categorical trace in order to define the mag Bendingmatriceswith entries fromZy, ,
treated as elements gf, , ® End (V) = Ly, ® Mat,,, (K) into the algebraCy, ,.

As we have said above, the matridgg,) also satisfy Cayley—Hamilton identities which
we call the derived ones. Namely, there exists a monic polynaitigl)(r) of degreen + 1
(recall that rkR) = 2) whose coefficients belong ®(Lj ;) such that

CHm(Lm) =0, m=12... (3.10)

Pass now to the algeblzj;‘q (see (3.2)) and consider the ima(glii(m)(t) of the polynomial
CH(m)() in this algebra. Relation (3.10) transforms into a corresponding relation in the
algebraﬁg_q:

C"Hf(m)(L(m)) =0, m=12... (3.11)

where the coefficients of the ponnomiﬁHi‘m)(t) are numerical and the matrik,, is
treated as an element ﬁg ¢ ® Mat, (K). An explicit form ofCHf‘m)(L(m)) is determined
by the following proposition.

m

Proposition 8. Let g anduy be the roots of the polynomidl?—[{l)(t) (3.3) @@t p = 2this

polynomial is quadratiz Then for eachn > 2 the ponnomiaCH{m)(t) is of the degree
(m + 1) and its rootsu;(m) are given by the formula

q"tim) = ¢ [m — ilgpo + ¢ " g + [ilglm — il4h,
i=01...,m (3.12)

Note, that for the standard NC (fuzzy) sphere this formula can be proved via the coprod-
uct (1.9) in the algebral(2) (cf. [28]). However, this method is not valid for the algebra
Lpq. g # 1and the proof (3.12) becomes more complicated. Such a proof will be given

Assuming the roots;(m), 0 < i < m, of the polynomialCH{m)(z)(m > 2) to be dis-
tinct we can introduce idempotertgm) € E%yq ® End (V) analogously to (3.4) (to get
uniform notations, we put; = ¢;(1)).

If upon fixing somen > 2 one multiplies (3.11) by,?m), n > 0, and then applies krto
the resulting equalities, one obtains a recurrence,fon) = TrRL’gm), n > 0. The general
solution for such a recurrence is of the form

an(m) =Y wi(m)di(m),
i=0

where the quantitieg/;(m) are defined by the initial conditions, i.e., by the values
TrRLEm), r=20,1,...,m. Thus, we have the following proposition.
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Proposition 9. If the rootsu;(m) of the polynomiaCH{m)(t) are all distinct then there
existd;(m) such that

m
TrRL?m) = Z/Ll'-’(m)di(m), n=0,12,...
i=0

The coefficientsi;(m) in the above expansion are functions in the rqofsn). These
functions are singular if there are coinciding roots. If we tyeét:) as elements of (L ;)
(or Z(SLp,g4)), then the quantitied;(m) become elements of the field of fractions of the
algebraly , (or SLp ).

Consider arepresentatian : L; , — End(V(y)) of the algebraCy, , (or SLp, ;) defined
at the end ofSection 2 It is easy to see that for a genetj¢the maprm; is surjective and
hence for any € Z(Lj ) the operatorr(z) is scalar

m(z) = ak(2)id, a(z) € K, Yz € Z(Lp ).
Therefore, we can define a characigr. Z(Lp ;) — K in the following way

x(2) = ax(2), Yz € Z(Lpq)-

Below we shall use the special notation for the Cayley—Hamilton polynomial in (3.11) taken
at the charactey;

CHk,Wl (t) = CHé(m) |X=Xk .

Also introduce another useful notation
Ly = Tl]) ® 700 (). (3.13)

Being the image of the matri)xEm) under the representatiamn, the above matrix,t(k)m)
is treated as an element of MgiMat,,, (K)). From the other handL‘(k,m) can also be

considered as an operator acting in the spage® V(). Indeed, ifin (3.13) we treaik(l;/)
andrn,, (h’j) as operators we get an operator acting in the spage® V). More precisely,
we put the Casimir elemer@as between the factor¥() and V{,,) and apply it to these
spaces via the representationsandr,,, respectively. This operator generateddssand
acting in the producVy ® V() will be denotedCasy, ).

It is evident that the matriX . ,,) satisfies the Cayley—Hamilton identity

CHk,m (L(k,m)) =0 (3 14)

which is a specialization of (3.11) with = ;.
If the roots of the polynomialH . ,.,(f) are distinct, one can introduce idempotents
ei(k, m) similarly to e;(m).
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Applying the morphism
tr = 'Y @ r'? : End(Viry) ® End (Vi) — K
to all powers of the matrix ») and using the Cayley—Hamilton identity for this matrix

we can prove the following proposition (similarly Rroposition 9.

Proposition 10. Let u;(k, m) be all the roots of the polynomi@lH  .,(z). Let them be
distinct Then there exist numbedig(k, m), 0 < i < m such that

m
tr Ly = > wilk,m'ditk,m), n=0,12, ...
i=0

They are uniquely defined by the valuesroiék,m), 1=0,...,m.

Definition 11. The quantitiesu;(m) andd;(m) (or w;(k, m) andd;(k, m)) will be called,
respectivelygigenvaluesindbraidedmultiplicities of the matrixL ) (or L k,m)).

Corollary 12. Let f(¢) be a polynomia(or a convergent serigsn t. Then

TrRf(Len) = D f(uitm)dim), — tr f(Lgom) = Y f(uilk, m)di(k, m).

In particular, taking a$ the polynomial in the right hand side of (3.4) and its higher
analogs we get the following proposition.

Proposition 13. If the eigenvalueg;(m) (resp.u;(k, m)) are distinct then
TrRei(m) = d,-(m), (3.15)
tr e;(k, m) = d;(k, m). (3.16)

Definition 14. The quantity tr ¢;(k, m) will be called the g-index and denoted
Ind (e; (m), ).

Note that we use this term by analogy with a widely recognized tegtrece” (which is
nothing but a categorical trace corresponding to a non-involutive braidingjdiniension”.

Remark 15. Multiplying the trace by a factor results in a modification of the eigenvalues
wu; but does not affect the multiplicitie. We are only interested in the latter quantities
and therefore can disregard the normalization of the trace. Similarly, the multipligities
are stable under changes of the numeric factor in (2.14). However, only with the factor
q¥™[m], in the definition ofX(,,) we get (3.12).

Remark 16. Similarly to[22,28] in theU,(s/(2)) case we deal with elements frofy{, ®
End(Vim))Y4¢@), i.e., we considel/,(s/(2))-invariant elements of this tensor product.
Introducing a product in the family of such elements similarly to the powers of the Casimir
element we get an algebra which can be consideredjeanalog of the Kirillov's family
algebras (cf[22,28)).
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Taking into account that;(m) € Eg,q ® End(V()) and puttingy = x; we get

ei(k, m) = 7 (ei(m)). (3.17)
Finally, we have
Ind (ei(m), %) = tr ei(k, m) = tr 7 (e;(m)) = trg T (Trg ei(m)). (3.18)

This justifies our treatment of the quantitye;(k, m) as ag-analog of the NC index. We
would like to emphasize that (3.17) and (3.18) are valid provided that the eigenvalues
wi(k, m) are pairwise distinct.

Remark 17. Speaking about the braided sphere, we are actually dealing with a family of
such spheres depending on the value of the chargcter,. So, if we treat the entries of

the idempoteng;(m) as elements otgq the g-index Ind ¢;(m), ;) is well-defined only

for a special value of depending ork.

Thus, due to (3.16) and (3.18) the computation of gumdex reduces to that of the
braided multiplicityd; (k, m). Now we will show how the latter can be computed by means
of the operator€asy ) defined above as images of the braided Casimir element:

Cask,m) : Vik)y @ Vim) = Vie)y @ Vim)-

Since map (3.6) is a categorical morphism and the representajiamslr,, are equivariant,
we can conclude that each opera@@sy, .,y belongs to Mor¢). This implies that it is scalar
on any simple component of the prodtigty ® V).

Assumingk > m one gets the following decomposition

Viky ® Vim) = Vi) ® Vikam—2) ® -+ - @ Vig—m)-

Here we use that fact that the Grothendieck (semi)ring of the category in question is iso-
morphic to that of/(2)-modules. We compute the trace of the oper@ag; ,,) using this
decomposition. However, before doing so we would like to make the following remark.
Having fixed an objectU € Ob(C), consider an arbitrary linear operatér: U — U.
What is its trace? The answer depends on the way this operator is realiz&fdwBocan
assign two element#; € End(U) andF; € End.(U). In general, tg F; # trg Fy. However,
under the additional assumptidne Mor(C), the operato# should be scalar on any simple
component ofJ. For such an operator the categorical trace is uniquely defined:

trrFE trr £y =trg Fr.

This follows from the trivial fact that t¢id is the same for the right and left realization of

the identity operator. To sum up, if a linear operator belongs to &)ptijen it is scalar on
simple objects and its categorical trace is uniquely defined. This observation enables us to
calculated; (k, m).
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Let u; be the eigenvalue a€asy, ) corresponding to the componeWl.,—2;) (0 <
i < m). Then we have

m
trrCas; ,y = > ujdi, whered; = dimg(Vicsm-21). (3.19)
i=0

Here the eigenvalues; are numbered according to decreasing spin (we use this term by
analogy with the classical case: the spin of the sgageequalsi/2). Since dink(V(,,)) =
[m + 1], in C, we have the final result.

Proposition 18. Letk > m and let the eigenvalues;(k, m) be all distinct. Then by ar-
ranging the eigenvalugs; according to decreasing spin we have

Ind (e;(m), mx) = [m +k—2i+1],, 0<i<m. (3.20)

Proof. Under the hypothesis formulae (3.15)—(3.18) are valid and, therefore, the family of
multiplicities d;(k, m) coincides with that of; from (3.19). O

Inthe next section, we will see thatif> m andr; are sl-representations in thig(s/(2))
case, then the eigenvaluggk, m) are automatically distinct.
In the case of the standard NC (fuzzy) sphere (@.e-, 1, i # 0) we get

Ind (e;(m), 7)) =m+k—2i+1

which proves the formula given ji4].

4. Example: quantum NC sphere

Let us consider a particular case of the previous construction, hamelgutrgum
NC sphereln the framework of our general approach we will introduce it using only the
corresponding Hecke symmetry, without any QG.

LetV be a two-dimensional vector space with a fixed basisx2}. Represent the Hecke
symmetry by the following matrix

O O oOoXR
oOpRr >0
ook, o
_ o O o

The matriced3 andC can be computed directly and after multiplying &&/(which is just
renormalization for the future convenience) take the form

_(q9 O _(a* O
(5 8). e=(% )
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We can choose the associated determinant-asi; ® x2 — gx2 ® x1. Thus, we have

11 12 -1
i v v _ 0 1 =1 _ 0 —q
v ||—<v21 vzz)—(_q o) =] 7).

Set

In these generators the mRE algebra given by (2.12) takes the form
gab — ¢ *ba = hb, q(bc — cb) = (ha — R)(d — a), gca — g tac = hc,
q(cd — dc) = c(ha — h), ad —da =0, q(db — bd) = (ha — B)b.  (4.1)
Represent the matrix as suggested above
L'=1! @ m(h) = a@ mi(h}) + b ® ma(hd) + ¢ ® ma(h) + d @ ma(h)
_ a ¢
=y 4
(Recall thabrl(h{) > xp = Six,-.) Taking into account (3.9) we find
| =TrgL = 1/C = g *a + qd.

It is straightforward to check thatis a central element in the mRE algebra. Now, let us
consider the traceless componéfy = siz(V) of the space

glr(V) = spang, b, c, d).

For a basis inlg(V) we take{b, ¢, g = a — d}. Being reduced onto the traceless component
of glr(V), system (4.1) becomes

g°gb—bg=hlg+q b,  gc—q’cg=—h{g+q ),
(q° + 1)(bc — cb) + (¢° — 1)g* = Mg + ¢ Vs (4.2)
Let us explicitly write the vector (two-dimensional) representationS&f , generated

by (4.2). Written respectively in the basgs, x2} and{x?, x?} the representations; and
1 read on the generators:

n@=x(f5 _21). mo=c(g ) me=x(3 g).

2
g +1 — _ q 0 _ _ 0 ¢
e=hl, m(g)—:«(o _q_l), nl(b)_;c<0 ).
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o= % 9)

Inorderto getthe quantum NC sphere we fix a value of a nontrivial quadratic central element.
As such an element we take the coefficiergntering the Cayley—Hamilton identity (4.3)
below. Then thequantum spherés obtained as the quotient of algebra (4.2) modulo the
ideal{oc — «}, for somex € K.

An explicit form of the matriced. and L) for SLp, , is as follows. Taking the sl-
representatiomr to constructL o) we get

-1

¢ —q 2%
. qg [2]4b 0
Loy=qg ' gl (@—qghg b
0 ql2lgc  —q7'g

(the latter matrix is calculated in the bagi§, gx1x2 + x2x1, x3}).
One can directly check that the mattixsatisfies the Cayley—Hamilton identity of the
form

L? — ¢ WL + oid = 0, (4.3)
where
_ o911 2 _ _ro1-1491-1.2 -1
o= [Z]q TrrLc = [2]q ([Z]q 8°+q “bc+qcb) € Z(SLp,g). (4.4)

The corresponding identity for the matixo) reads

2] 212 22
L?z) - 2hq—2qL(22) + q—;(q 2R2 4 o)L(2) — hq—fo =0.

This was shown iif13] for a different normalization of ().
So, settingr = o € K we come to the equation farwith numerical coefficients

L2 — ¢ AL +aid=0

with the roots
o = po(1) = 3(¢ *h — v/q72h? — 4a),
pa = pua(1) = 3(g~*h+ Vg 2h% — 4a).
The corresponding multiplicities (which coincide withze;(1) due to (3.15)) are
2y, [2h
2 2\/h2 —4aq?
2, [2lh

2 2R —dag®

)

do(1) = Trreo(1) = Trg(L — paid)(no — pn1) ™ =

d1(1) = Trrex(1) = Trr(L — poid)(u1 — po) ™+ =
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As for the matrixL ), its eigenvalues can be found by means of (3.12) witk: 2.

Our next aim is to compute the value@ftorresponding to the representatignor, in
other words, the value gfi (o). Clearly, this value does not change if we replagdy 7.
Such a value (for a Casimir element being a multiple of (4.4)) was compu{é&il idsing
that result we get

PRIk + 2],
g*([k + 2] — [K]g)*

o = x(0) = (4.5)

This implies that

_ g2k + 1]
Vg 2h2 — 4o = :t—[k - 211 — [k]:h. (4.6)

Choosing the positive sign in the right hand side of the formula above we get

_q_lh[k]q
Wt 2, — Ky pak, 1)
do(k, 1) = [k + 2], di(k, 1) = [k]4.

q thlk + 2],

nolk, 1) = T k2, - Ky

Note that the eigenvalugs(k, 1), i = 0, 1, are distinct for alk > 1.

Proposition 19. On the quantum NC sphere we have

q""F g [m = 2042y hg Y

di(m) =
2 2\/h2 — dag?

, O0<i<m.

Proof. Suffice it to check that
mr(di(m))[k + 1], = [k +m + 1 — 2i],.
It can be easily done with the help of the following formula

[k +mly + [k —m]ly =ky(qg" +q7™). O

In fact, this proposition is valid for any braided sphere since (4.5) can be shown to be
true for any admissible Hecke symmetry of rank 2. Also, note that ferl we get formula
(32) from[22].
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5. Concluding remarks

1. First of all, we want to emphasize that the RE algebras (especially U4, (8&n)) case)
play a very important role in integrable system theory. So, it is very interesting to study
them fromK-theoretical viewpoint. However, since these algebras (and their modified
counterparts) are well defined for non-quasiclassical braiding as well, a natural problem
arises of comparing the NC index for “quasiclassical algebras” and “non-quasiclassical
ones”. The crucial difference between these cases can be seen on the level of the matrices
L(2), L(3), .- - and related idempotents: they depend drastically from a concrete form of
the initial Hecke symmetriR. However, the resulting-index does not depend on it. It
can be explained by the properties of the categorical trace: though the mBteod€
and their extensions coming in the formulae for categorical traces depend on a concrete
form of R, the categorical dimensioa-Categorical trace applied to the identity operator)
does not (cf[11]). Thus, essentially, we only have two casgs: 1 andg # 1. The NC
index corresponding to the cagez 1 is calledg-index similarly to the well-recognized
terms ‘g-trace” and §-dimension”.

2. In contrast wit27] we do not define any involution in the algebras in question. As a
consequence, we do not use aagperation in our representation theory either. Never-
theless, in thé/, (s/(2)) case it is not difficult to introduce such an involution operator
in the quantum NC spher@ @ndqg are assumed to be real)

*xb = c, *c = b, *g=g

and extending it on the whole algebra via the propeftyy) = (xy) (xx).
Moreover, such an involution exists for any mRE algebra with the so-called real type
R (cf. [25]). However, considered as an operator in Hid, this involution is not a
categorical morphism since the Euclidean pairing in the spdsenot. (Up to a factor,
the only pairing inV which is a categorical morphism is given by (2.17).) So, such
an involution is somewhat useless for constructing an equivariant representation theory
(also, cf[5] for a discussion). Emphasize a very important property of our representation
theory: in theU,(sl(2)) case ay — 1 we getSL(2)-equivariant representation theory.
There is another inconvenience of the involution under discussion. It does not allow
to get the quantum sphere asl&ralgebra. We refer the reader[8 where the equato-
rial Podles sphere is explicitly presented by a system of equations containing complex
numbers. Consequently, the corresponding quotient algebra cannot be considered as an
R-one in contrast with the coordinate ring of the usual sphere or the NC (fuzzy) one
(cf. [14)).
3. Point out a crucial property of the pairing (1.1): it is in some sense “equivariant”. This
means that all maps in the chain

Lhg ® ENA(Vim) £ L1, 2 Endiy) 2 K

are categorical morphisms (in thg(s/(2)) case they commute with tidg (s/(2)) action).
Emphasize that in th&,(s/(2)) case the Q@/,(sl(2)) acts on both factors if , ®
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End(V(.,)) viathe QG coproduct. Thus, the idempotes(s:), being realized as elements
of Ly , ® End(V(m)), become invariant (séeemark 1¢. Namely, the fact that the space
End(V(.,)) is equipped with an action of this QG urges us to applychiegoricaltrace

to the second factor of , ® End(V(,,)) product instead of the usual one. By contrast,
in [16] there was not defined any actionif(s/(2)) on the corresponding idempotents
as a whole.

. Restricting ourselves to thg,(s/(2)) case, let us discuss a geometrical meaning of the
NC index and itg}-analog. Setting = m — 2i we can represent (3.20) in the form

Ind (e;(m). 7)) = [n + k + 1], (5.1)

Thus, theg-index depends only on andk and therefore the idempotenigm) and
ei+1(m + 2) give rise to the samg-index, being paired with any representatign(k
must be sufficiently large).
Remark, thatin the classical limyg & 1,7 = 0) the idempotents (m) ande;1(m +
2) are equivalent (for the definition ¢29]) and therefore belong to the same claskin
We do not know whether these idempotents are equivalent in the conventional sense for
the quantum algebras. (The problem of their equivalence seems to be difficult.) However,
as follows fromProposition 19

Trrei(m) = Trreis1(m+2), 0<i<m, Vm >0. (5.2)

The modules for which the corresponding idempotents have equal tragesillTbe
calledtrace-equivalentlt is easy to see that, for a genercthe modules from the
sequence

e(0), eo(m), e;y(m), m=1212,...

are not trace-equivalent. Thus, the set of classes of trace-equivalent modules is labelled
byn = m — 2i € Z. This looks like the Picard group of the usual sphere. This gives one
more reason to use the categorical trace since if one replagebdyTthe usual trace,
then (5.2) would be wrong.

Observe, that for the usual sphere all irreducible representations of its coordinate ring
are one-dimensional and the pairing of such a representation with any idemg6tant
is always equal to 1. Thus, NC index for line bundles on the usual sphere is meaningless.
Instead, we consider the Euler characteristic of line bundles on it. In order to do so we
realize the usual sphere as a complex projective variety and consider the holomorphic line
bundlesO(n), n € Z. Then the bundle®(n) andO(—n), n > 0, become analogs of our
modules corresponding to the idempoteni®), ¢, (n). Which line bundle corresponds
to which projective module depends on the complex structure on the sphere (in our
setting the result depends on the sign of the root in (4.6)).

The Euler characteristic of the bundl¥n) is defined to be

x(On)) = dim HY(O(n)) — dim HY(O®))

(for n > 0 it gives the dimension of the space of global holomorphic sections). Due to
the Riemann—Roch theorem we hgy®(n)) = n + 1 which coincides with the above
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quantity j» + k + 1], atk = 0 andg = 1. So, forqg = 1 we consider the index (5.1)

as a NC analog of the Euler characteristic of the class of the idempeténjswith

n = m — 2i. However, in contrast with the commutative case this NC index depends
on two argumentsn labelling classes of trace-equivalent idempotents katabelling
classes fronKj.

Similarly, forq # 1 andh # 0 theg-index depends on two parameters and is given by
g-counterpartofthe integer+ k + 1. Ath = Othe algebr#;, , does nothave ameaning
of an enveloping algebra and we consider neither its representatiogsmaex for it.

In this case we take the usual sphere as a pattern. So, we consider the quantlfy [
i.e., the specialization of thggindex atk = 0, as ag-analog of the Euler characteristic.
To be more precise, we should call the quantity (5.1) thedN@dex considering its
specialization ak = 0 as “commutativey-index” or “g-Euler characteristic” of the-
commutative sphere (s&gefinition 7).

5. The scheme presented in this paper is valid forg\Ehalogs of semisimple orbits (i.e.,
orbits of semisimple elements) if(n)* which are not necessarily generic ones. These
analogs arising from Hecke symmetries of higher rank can be defined (at least for the
U,(sl(n)) case) by methods of the pagét. Thus, the “easy part”, namely, the fact that
theg-index is nothing but g-dimension of a component in some tensor product, can be
straightforwardly generalized. The proof of an analog (3.12) is, however, much harder.
Nevertheless, our low dimensional computations make the following conjecture very
plausible.

Conjecture 20. Let ;1 < i < p be roots of the ponnomiaIH{l)(t) (3.3). Then for
Vm > 2 the degree of the ponnomié‘Hé‘m)(t) reads

degCiy) = (" 771

m

and its roots are given by the formula

P
- [ki]
q" kg k(M) = qm'-i,- wi+ Eplka, ... kp)h,
i=1
ki>0, ki+---+kp=m, (5.3)
where(k1, . .., kp) is the symmetric function defined as follows
p
§p(k1, ) kp) = Z qkl+k2+m+k‘r7m[ks]q[kl +hko+---+ ks—l]q-
s=2

6. Itis worth emphasizing again, that in thg(s/(2)) case we have a two parameter de-
formation of the usual sphere (more precisely, of its complexification). Let us discuss
the classical analog of this two parameter family. More generally, we consider Poisson
structures on any semisimple orbitsiffn)* (or su(n)*). On such an orbit there exists a
family of the so-called Poisson-Lie structures (6f). Their quantization (in general,
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formal) leads to algebras covariant with respectUidsi(n)). But in this family only

one bracket (up to a numerical factor) is compatible with the Kirillov one. Namely, the
simultaneous quantization of the corresponding “Poisson pencil” gives rise to the quan-
tum algebras which are appropriate quotient§6f, , (the reader is referred {@3] for
detail).

However, the properties of quantum algebras arising from the Kirillov bracket alone
and those arising from the above pencil are different. The Kirillov structure is symplectic
and for it there exists an invariant (Liouville) measure. It gives rise to the classical trace in
the corresponding quantum algebra. On the contrary, the other brackets from the Poisson
pencil are not symplectic and they have no invariant measure. Their quantization leads
to the algebras with trace but this trace is braided. It is just these algebras and their
“non-quasiclassical” analogs (in a particular cas&jk£ 2) which are the main objects
of the present paper.

Also note, that the Poisson-Lie structures non-compatible with the Kirillov bracket
give rise to one-parameter quantum algebras. It seems that for these algebras there is no
reasonable way to construct meaningful projective modules. On the usual sphere such
structures do not exist due to its low dimension.
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