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Abstract

To some Yang–Baxter braidings of Hecke type we assign algebras called braided non-commutative
spheres. For any such algebra, we introduce and compute aq-analog of the standard pairing Ind :
K0(A) × K0(A) → Z called a non-commutative index. Unlike the standard non-commutative index,
our q-analog is based on the so-called categorical trace specific for a braided category in which the
algebra in question is represented.
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1. Introduction

In K-theory there exists the well-known pairing (cf.[23]):

Ind : K0(A) × K0(A) → Z, (1.1)

whereA is a given associative algebra,K0(A) is the Grothendieck group of the monoid
of its finite dimensional representations, andK0(A) is the Grothendieck group of classes
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of one-sided projectiveA-modules.1 (Observe that according to the Serre–Swan approach
such modules are considered as appropriate analogs of vector bundles on a variety.) We
will only deal with the finite dimensional representations of algebras in question taking the
category of finite dimensionalU(sl(n))-modules as a pattern. In this sense our setting is
purely algebraic. This is the main difference of our approach from that based on the Connes
spectral triples in which a considerable amount of functional analysis is involved (cf.[1],
where the quantum function algebraSUq(2) is studied from this viewpoint).

Any one-sided projective module can be identified with an idempotente ∈ Mat(A) where
Mat(A) stands for the inductive limit of the algebras Matn(A) of n × n matrices with entries
fromA equipped with the natural embeddings Matn(A) ↪→ Matn+1(A).

Given a representationπU : A → End(U) and an idempotente ∈ Mat(A), the pairing
(1.1) is defined by

Ind (e, πU ) = tr(πU (tr e)) = tr(πU (e)), (1.2)

whereπU is naturally extended to Mat(A). (It is not difficult to see that Ind (e, πU ) does not
depend on a representative of a class fromK0(A) or K0(A).)

In what follows the pairing (1.1) will be calledthe non-commutative(NC) index.
In this paper we introduce a “braided” version of the NC index. This version is based

on the so-calledcategorical trace(seeSection 2) and motivated by the “braided” nature of
the algebras we shall deal with. These algebras are quotients of some braided analogs of
enveloping algebrasU(gl(n)) andU(sl(n)) and are thought of as braided NC counterparts
of orbits in sl(n)∗. We calculate the braided NC index on a particular class of such type
orbits.

Before introducing the algebras mentioned above let us briefly describe the braided
categories in which the algebras will be represented. Any such a category is generated by
a finite dimensional vector spaceV equipped with a map calleda braiding(morphism):

R : V⊗2 → V⊗2, (1.3)

which satisfies the quantum Yang–Baxter equation:

R12R23R12 = R23R12R23, R12 = R ⊗ id, R23 = id ⊗ R. (1.4)

Besides, we will supposeR to be of the Hecke type. This means that the braidingRsatisfies
the followingHecke condition:

(q id − R)(q−1 id + R) = 0, q ∈ K. (1.5)

HereafterK stands for the ground field (usuallyC but sometimesR is allowed) and the
parameterq ∈ K is assumed to be generic (butq = 1 is permitted). The braidings of the
Hecke type will be also calledHecke symmetries.

Let C = C(V ) be the category generated by the spaceV (seeSection 2). The sets of its
objects and categorical morphisms will be denoted, respectively, by Ob(C) and Mor(C). The
categoryUq(sl(n)) − Mod of all finite dimensional modules over the quantum group (QG)
Uq(sl(n)) serves as an example ofC(V ). In this case the spaceV is the fundamental (vector)

1 Throughout the paper all projective modules are supposed to be finitely generated.
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module, the braidingR is the Drinfeld–JimboR-matrix and the categorical morphisms are
linear maps commuting with the action ofUq(sl(n)).

Under some additional conditions onR(seeSection 2) the braided categories in question
arerigid (for the terminology the reader is referred to[2]). This means that for anyU ∈ Ob(C)
there existsU∗

r ∈ Ob(C) (resp.U∗
l ∈ Ob(C)) for which one can define a non-degenerate

pairing:

U ⊗ U∗
r → K (resp. U∗

l ⊗ U → K)

and this map is a categorical morphism. The spaceU∗
r (resp.U∗

l ) is called theright (left)
dual space toU. Therefore, for anyU ∈ Ob(C) the space of its right (resp. left)internal
endomorphisms:

Endr(U)
def= U∗

r ⊗ U, (resp.Endl(U)
def= U ⊗ U∗

l ) (1.6)

is also contained in Ob(C).
Then, inC we define an important categorical morphism

trR : Endε(U) → K, ε = l, r

called the categorical trace. The super-trace is an example of such a categorical trace.
Namely, in super-algebra and super-geometry this trace replaces the classical one. For a
similar reason, dealing with a braided category, we make use of the categorical trace specific
for this category.

Now, let us pass to algebras in question. Assume for a moment thatq = 1. This means
that our braidingRbecomes involutive:R2 = id. For such a braiding there exists a natural
way to definea generalized Lie bracket:

[ , ]R : Endε(V )⊗2 → Endε(V ), ε = l, r (1.7)

(cf. [10] for detail). Being equipped with such a bracket, the space Endl(V ) (for definiteness
we setε = l) becomesa generalized Lie algebra. It will be denotedglR(V ). (Note, that a
similar generalized Lie bracket can be defined in Endl(U) for any objectU ∈ C(V ).) For
instance, a super-Lie algebra is a particular case of a generalized one.

Moreover, for the aforementioned categorical trace we have

trR[X, Y ]R = 0, X, Y ∈ End(V ) (1.8)

and the subspaceslR(V ) of all traceless elements is closed with respect to this bracket. Thus,
the spaceslR(V ) is alsoageneralizedLie algebra. Then their enveloping algebrasU(glR(V ))
andU(slR(V )) can be defined by systems of quadratic-linear equations. Furthermore, they
becomebraided Hopf algebras, being equipped with an appropriate coproduct, antipode
and counit (cf.[25] for the definition). On generatorsX ∈ glR(V ) (or X ∈ slR(V )) this
coproduct has the classical form:

�(X) = X ⊗ 1 + 1 ⊗ X. (1.9)
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By means of the coproduct (which gives rise to a braided version of the Leibniz rule) we
can construct an embedding

Endl(V ) → Endl(V
⊗m), ∀m. (1.10)

Restricting these maps on the subspaces associated with the Young diagrams (the corre-
sponding Young projectors can be constructed for any involutive braiding) we get a family
of irreducible representations of the generalized Lie algebraslR(V ). Then considering all
their direct sums we get a category of finite dimensional representations of the algebra in
question similar to that ofsl(p)-modules wherep = rk(R) (seeSection 2). The main differ-
ence between the latter category and a braided one consists in traces. When considering the
algebraU(glR(V )) (or U(slR(V ))) with the aforementioned category of finite dimensional
representations it is natural to use the corresponding categorical trace in order to define all
numerical characteristics (dimensions, indices, etc.).

It is this scheme that is realized in the present paper. However, here we deal with a
more interesting (and more difficult) case of algebras and categories associated to some
non-involutive Hecke symmetries. In this case it is not evident which algebras should be
taken asU(glR(V )) andU(slR(V )). The matter is that a direct generalization of the bracket
(1.7) to a non-involutiveR leads to “enveloping algebras” which are not flat deformations
of the classical ones even ifR is a deformation of the usual flip. In other words, the
dimensions of the homogeneous components of the corresponding graded algebra differ
from their classical analogs.

Nevertheless, there exist algebras (denoted below asL�,q andSL�,q) possessing good
deformational properties and playing the role of braided analogs of enveloping algebras
U(gl(n)) andU(sl(n)), respectively (though apparently they do not look like the usual en-
veloping algebras). They can be described in terms of themodified reflection equation
(mRE). This equation can be defined for any braiding; for involutiveR it leads to the afore-
mentioned enveloping algebrasU(glR(V )) andU(slR(V )). The algebrasL�,q andSL�,q are
presented in the next section.

In the case related to the QGUq(sl(n)) (in the Uq(sl(n)) case for short) these alge-
bras are one-sidedUq(sl(n))–modules unlike theUq(sl(n)) themselves which is a two-sided
Uq(sl(n))–module. Using the results of[24] it is possible to show that anyUq(sl(n))–module
becomes anSL�,q–one. For the Hecke symmetry coming fromUq(sl(n)) the corresponding
categoryC(V ) is the representation category of this QG and all its objects can be equipped
with an action of the algebraSL�,q. The family of all representations of the algebraSL�,q
is, however, larger than that ofUq(sl(n)). We constrain ourselves to considering only fi-
nite dimensionalSL�,q–representations which areUq(sl(n))–modules and are equivariant
(covariant) with respect to the action of the QG.

But in general case we do not have such a useful tool as the QG. So, we modify the
notion of equivariant representation in order to adapt it to a more general setting.

In the case rk(R) = 2 we equip the categoryC(V ) with an equivariant action of the
algebraSL�,q. Then we introducea braided NC sphereas a quotient of this algebra (we
get it by fixing a value of a quadratic braided Casimir element) and calculate the braided
NC index for it. In theUq(sl(2)) case the braided NC sphere is also calledthe quantum NC
sphere.
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The quantum sphere is close to the known Podleś sphere. However, while the Podleś
sphere isUq(su(2))–homogeneous space and is introduced via some reduction from its
dual, our construction is defined as an appropriate quotient of the mRE algebra. As a
consequence, the representation theory of the Podleś sphere developed in[27] differs
drastically from that ofSL�,q.

Note, that the NC index on the Podleś sphere (namely, a particular case called equatorial
sphere) was computed in the work[16] with the use of the representation theory from[27],
the trace defined in[26] and idempotents introduced in[17]. Similar computations for other
Podlés spheres were announced in[18].

In contrast, our method of constructing idempotents on the braided (in particular, quan-
tum) NC spheres makes use of a braided version of the Cayley–Hamilton identity for some
matrices from Mat(L�,q). This identity is a very powerful tool: it allows us to construct a
family of projective modules for a big set of algebras. In particular, we get the so-called
quantum NC spheres which are two-parameter deformations of the usual sphere. Setting
q = 1 we get the standard NC (fuzzy) sphere and the idempotents on it considered earlier
in [14]. Besides, in contrast with[16] we use the equivariant representation theory (similar
to that ofsl(2)) and the categorical (orq-)trace instead of the usual one.2

The paper is organized as follows. In the next section we define the categories and
algebras we are dealing with. InSection 3we introduce and compute the braided version of
the NC index. InSection 4we consider the quantum sphere as an example of our general
construction. InSection 5we discuss some aspects of our approach. In particular, we present
a treatment of the NC index and itsq-analog for the algebras in question as a quantum
counterpart of the Euler characteristic of vector bundles on the usual sphere.

2. CategoriesC(V ) and related algebras

We begin this section with a short description of the categoryC = C(V ) generated by a
finite dimensional vector spaceV equipped with a Hecke symmetryR. This category forms
a base of all our considerations, for its detailed description see[11].

Given a Hecke symmetryR, one can connect with it a “symmetric” (resp. “skew-
symmetric”) algebraΛ+(V ) (resp.Λ−(V )) of the spaceV defined as the quotient

Λ+(V ) =
{

T (V )

Im(q id − R)

} (
resp. Λ−(V ) =

{
T (V )

Im(q−1 id + R)

})
.

HereT (V ) stands for the free tensor algebra. LetΛk±(V ) be the homogeneous component
of Λ±(V ) of degreek. If there exists an integerp such thatΛk−(V ) is trivial for k > p

and dim(Λp
−(V )) = 1, thenR is calledan even symmetryandp is calledthe rankof R:

p = rk(R). Hereafter the symbol “dim” stands for the classical dimensions. In what follows
all Hecke symmetries are assumed to be even.

2 In the caseq �= 1,� = 0 we get an algebra which is in a sense “q-commutative”. Our method of constructing
projective modules is still valid for it. However, we do not considerq-index for this algebra. Our treatment of this
“q-commutative” case is given inSection 5.
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Using the Yang–Baxter equation (1.4) we can extend braiding (1.3) onto any tensor
powers ofV

R : V⊗m ⊗ V⊗n → V⊗n ⊗ V⊗m (2.1)

(as usual, we putV⊗0 = K and (1⊗ x) � R = x ⊗ 1, (x ⊗ 1) � R = 1 ⊗ x,∀x ∈ V⊗m).
(Hereafter the notationx � P (resp.P � x) stands for applying an operatorP to a vector
x ∈ V so that the spaceV becomes a right (resp. left) module over the operator algebra.)

For an arbitrary fixed integerm ≥ 2 we consider partitionsλ 
 m

λ = (λ1, λ2, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk > 0, λ1 + · · · + λk = m

(k is calledthe heightof λ). There exists a natural way to assign a spaceVλ (equipped with
a set of embeddingsVλ ↪→ V⊗m) to any partitionλ. For this one should use theq-analogs
of Young projectors well known in the theory of symmetric group (cf.[11]). By definition
the spacesVλ are simple objects of the categoryC (we will motivate this definition below).
All other objects are the direct sums of the simple ones. Upon assumingR to be even of
rankp we can confine ourselves to partitions such thatk ≤ p since any spaceVλ with λ

such thatλk+1 > 0 vanishes.
Let us describethe categorical morphismsin C. The termcategoricalemphasizes the dif-

ference among morphisms from Mor(C) and “internal endomorphisms” which are elements
of Endε(U) ∈ Ob(C), ε = r, l.

We distinguish categorical morphisms of two kinds. Categorical morphisms ofthe first
kind are the linear mapsV⊗m → V⊗mm ≥ 0 coming from the Hecke algebra, as well as
their restrictions to any object embedded intoV⊗m. Recall, that the Hecke algebraHm can
be represented inV⊗m by means of the Hecke symmetryR.

The categorical morphismsof the second kindarise from a procedure of canceling
columns of heightp in the Young diagram corresponding to a given partitionλ. The proce-
dure is as follows. Denote byv a generator of the one-dimensional spaceΛ

p
−(V ) (we callv

the associated determinant). If one fixes a basis{xi,1 ≤ i ≤ n = dim(V )} in the spaceV,
thenv can be represented in the form

v = vi1...ipxi1 ⊗ · · · ⊗ xip .

Hereafter the summation over repeated indices is always understood. The tensorvi1...ip is
one of the two structure tensors that define the matrix of the highest order antisymmetrizer
(projector)A(p) : V⊗p → Λ

p
−(V ) in the basisxi1 ⊗ · · · ⊗ xip of V⊗p

A(p)(R)
j1...jp
i1...ip

= ui1...ipv
j1...jp . (2.2)

As one can show,� the associated determinantv possesses the property

(x ⊗ v) � R = (v ⊗ x′) and (v ⊗ x) � R = (x′′ ⊗ v) ∀ x ∈ V

where the correspondencesx → x′ andx → x′′ are some linear mapsV → V . Demand
them to be scalar (multiple of the identity map) and equal to each other. In other words, let
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there exists a nonzeroa ∈ K such that

(x ⊗ v) � R = a(v ⊗ x) and (v ⊗ x) � R = a(x ⊗ v).

The Hecke symmetryRsatisfying such a requirement will be calledadmissible. In this case,
by settingR̄ = a−1R we have

(x ⊗ v) � R̄ = (v ⊗ x), (v ⊗ x) � R̄ = (x ⊗ v). (2.3)

Thecanceling a columnis defined as a mapψ

Λ
p
−(V )

ψ−→ K : ψ(v) = 1.

Due to (2.3)ψ obeys the following condition

R̄ ◦ (id ⊗ ψ) = (ψ ⊗ id) ◦ R̄. (2.4)

The above relation is valid also for the mapψ−1 (inverse toψ). By definitionψ andψ−1

are the morphisms of the second kind. Any product (composition)f · g of morphisms of
the both kinds givesa categorical morphismby definition. Also, any tensor productf ⊗ g

of categorical morphisms will be a categorical morphism.

Remark 1. Condition (2.4) (in a little bit more general form) is sometimes included in the
system of axioms for braided categories (factoriality condition). In[31] a braiding satisfying
such a condition is callednatural.

In what follows we assumeR to be admissible. Then the condition on the height ofλ

can be strengthened:k < p. This means that we cancel all columns containingp boxes.
Let us emphasize that for an objectVλ with a fixed embeddingVλ ↪→ V⊗m a map

Vλ → Vλ is a categorical morphism if and only if it is a scalar map. This is the reason to
call these objectssimple. Such an observation plays an important role in what follows. If a
mapξ : U → U,U ∈ Ob(C(V )) is proved to be a categorical morphism and ifU does not
contain isotypical components (i.e., simple objectsVλ imbedded inU in different ways)
then on each simple component ofU the mapξ is scalar.

The category thus introduced is a monoidal and quasitensor one whose braidings are
restrictions of maps (2.1) onto the simple spacesVλ and their direct sums. We call such
a categorybraided. Note that its Grothendieck (semi)ring is isomorphic to that ofsl(p)-
modules wherep = rk(R).

Moreover, the corresponding categoryC is rigid, that is for anyU ∈ Ob(C) the dual
spacesU∗

ε , ε = r, l (right and left) are also contained in Ob(C). In particular, one can show

thatΛp−1
− (V ) is the dual (right and left) ofV. This means that there exist non-degenerate

pairings

Λ
p−1
− (V ) ⊗ V → K and V ⊗ Λ

p−1
− (V ) → K (2.5)

which are categorical morphisms.
Let {xir} (resp.{xil }) be the dual basis in the right (resp. left) dual space toV

〈xi, xjr 〉 = δ
j
i , 〈xjl , xi〉 = δ

j
i . (2.6)
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The dual basises{xir} and{xil } can be expressed in the form

xir = va1...ap−1ixa1 ⊗ · · · ⊗ xap−1, xil = via1...ap−1xa1 ⊗ · · · ⊗ xap−1, (2.7)

hence{xiε} ∈ Λ
p−1
− (V ), ε = r, l. Now, pairings (2.6) can be explicitly constructed by means

of the categorical morphismψ. As a consequence, pairings (2.6) become categorical mor-
phisms justifying the identification ofΛp−1

− (V ) with the dual space ofV (for details cf.
[11]).

Introduce now acategorical tracewhich will play the central role in all our subsequent
considerations. It is defined as a properly normalized categorical morphism Endε(U) → K.
For details the reader is referred to[11] and we only briefly outline this construction.

For any admissible Hecke symmetryR there exists an operatorQ that we call “inverse
toRby column”, i.e.,

R
jb
iaQ

al
bk = δliδ

j

k ⇔ Q
jb
iaR

al
bk = δliδ

j

k,

whereRjb
ia is the matrix of the Hecke symmetry in the basisxi ⊗ xj:

(xi ⊗ xj) � R = Rkl
ij xk ⊗ xl.

Consider the matrices

B
j
i = Q

aj
ai, C

j
i = Q

ja
ia .

Evidently, they satisfy

Ba
bR

bj
ai = δ

j
i , R

jb
iaC

a
b = δ

j
i . (2.8)

Extending these matrices to any objectsVλ in a proper way we get the matricesBλ and
Cλ such thatthe categorical tracetrR on the space Endr(Vλ) (resp. Endl(Vλ), see (1.6)) is
defined as follows

trRX = tr(Bλ · X̂), ∀X ∈ Endr(Vλ)

(resp. trRY = tr(Cλ · Ŷ ), ∀Y ∈ Endl(Vλ)). (2.9)

Here tr is the usual matrix trace andX̂ (resp.Ŷ ) is the matrix of the linear operatorVλ → Vλ

corresponding to an elementX ∈ Endr(Vλ) (resp.Y ∈ Endl(Vλ)).
The matricesBλ andCλ are constructed in such a way that the mapX → trRX is a

categorical morphism and, besides, thecategorical dimension

dimR(U) = trR idU ∀U ∈ Ob(C)

is an additive-multiplicative functional on the Grothendieck (semi)ring. Then for any simple
objectVλ one gets

dimR(Vλ) = sλ(qp−1, qp−3, . . . , q3−p, q1−p),
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wheresλ is the Schur function inp variables. A proof of this fact is given in[19,11] (in
another setting an equivalent formula can be also found in[21]).

As a consequence of (2.7) the maps betweenV ∗
r andV ∗

l defined on basic elements by

xir �→ xal B
i
a, xil �→ xar C

i
a (2.10)

belong to Mor(C). Therefore, the same is true for the maps defined via

1 �→ xal B
i
a ⊗ xi, 1 �→ xi ⊗ xar C

i
a

since they are compositions of the mapψ−1

1
ψ−1

�→ v = xir ⊗ xi = xi ⊗ xil .

and morphisms (2.10).
Our next aim is to introduce some associative algebras naturally connected to the cate-

gories involved. We consider these algebras as braided analogs of the enveloping algebras
U(gl(n)) andU(sl(n)). Motivation will be given later.

As a starting point of our construction we introduce elementsl
j
i = xi ⊗ x

j
r and form the

matrix

L = ‖lji ‖, 1 ≤ i, j ≤ n = dim(V ) (2.11)

where the lower index enumerates rows and the upper one enumerates columns. AssumeR
to be an admissible Hecke symmetry and impose the following relations on the free algebra,
generated by all the elementslji :

RL1RL1 − L1RL1R − �(RL1 − L1R) = 0, whereL1 = L ⊗ id, � ∈ K (2.12)

or, explicitly,

R
a1b2
i1i2

lb1
a1
R
c1j2
b1b2

lj1
c1

− l
a1
i1
R
b1c2
a1i2

l
c1
b1
Rj1j2
c1c2

− �(Raj2
i1i2

lj1
a − lai1R

j1j2
ai2

) = 0.

We call this relation themodified reflection equation(mRE) and the corresponding algebra,
L�,q, the modified reflection equation algebra. For any Hecke symmetryRwith q �= 1 this
algebra can be obtained from the non-modified one (corresponding to� = 0) by a shift of
generatorslji → l

j
i − aδ

j
i id with a = �(q − q−1)−1. This implies that forq �= 1 the algebras

L�,q are isomorphic for any� to each other. Atq = 1 these algebras are isomorphic iff the
corresponding parameters� are not equal to zero. The corresponding isomorphism can be
obtained by rescaling the generators.

Now, consider the maps Span(l
j
i ) → K and Span(lji ) → Span(lji )

⊗k defined on the basic
elements as follows

l
j
i �→ δ

j
i and l

j
i �→ l

a1
i ⊗ la2

a1
⊗ · · · ⊗ ljak−1

(2.13)

(in a matrix form they can be written asL �→ id and L �→ L⊗k, respectively) which
evidently belong to Mor(C). In what follows the matricesL⊗k whose entries are con-
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sidered as elements of the spaceL�,q (or SL�,q defined below) will be denoted
Lk.

Proposition 2. Let us setlji � xk = xiB
j

k. Then the image of the left-hand side of(2.12)
under this map is equal to0 if we put� = 1.Hence, we have a representation

π1 : L�,q → Endl(V ), � = 1.

Proof. Straightforward calculations. Suffice it to apply the left-hand side of (2.12) to an
arbitrary element ofV and use property (2.8) of matrixB. �

In Endl(V ) we can choose the natural basish
j
i = xi ⊗ x

j

l

h
j
i � xk = δ

j

kxi.

Let us consider the map Span(l
j
i ) → Endl(V ) defined on the basis as follows

l
j
i �→ hai B

j
a.

It is a categorical morphism. Upon identifying the elementsl
j
i and their images we can

consider the set{lji } as another basis in the space Endl(V ). (Note, that in the basishji the

representationπ1 becomes tautological:π1(hji ) = h
j
i andπ1(hji ), being realized as a matrix,

has the only nonzero (i, j)th entry which is equal to 1.)
It is worth emphasizing a difference between these basises. For the set{hji }, the product

h
j
i ⊗ hlk → δ

j

kh
l
i

is a categorical morphism while for{lji } the maps given in (2.13) are categorical morphisms.
We denote the space Endl(V ) by glR(V ) and now describe its subspace of traceless

elements. For any rankp, the spaceglR(V ) decomposes into the direct sum of two simple
spaces, one of them is one-dimensional. This one-dimensional component is generated by
the elementhii = xi ⊗ xil = v or, equivalently, byl = C

j
i l
i
j. The elements of other simple

component of Endl(V ) are calledthe traceless elements. In the sequel such a space will be
denotedslR(V ). Moreover, we define the algebraSL�,q as the quotientSL�,q = L�,q/{l}.

Propositions 2, 4 and 6below suggest a new way of constructing the representation
theory of the algebrasL�,q andSL�,q in the case rk(R) = 2. In contrast with the usual
method valid in the case related to the QG when the triangle decomposition ofL into the
product ofL+ andL− is used, our approach works in the general setting (for arbitrary
admissible Hecke symmetry).

Observe, that all representations in question are equivariant in the sense of the following
definition.

Definition 3. LetA be eitherL�,q orSL�,q andU ∈ C(V ) be an object with an associative
productU ⊗ U → U which is a categorical morphism (e.g.,U = Endε(W), ε = r, l or a
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direct sum of tensor products of similar spaces). We say that a map

πU : A → U

is an equivariant representationif it is a representation (i.e., an algebra morphism) and its
restriction toglR(V ) (resp.slR(V )) is a categorical morphism.

Our next step is to define representations ofL�,q in all simple spacesVλ. We constrain
ourselves to the simplest case rk(R) = 2. In this situation the simple objects ofC are labelled
by partitions of height 1:λ = (m). The corresponding Young diagram has only one row
of lengthm. For brevity, we will writeV(m) instead ofVλ, λ = (m). Note, that in this case
V(m) = Λm+(V ).

Upon fixing a basis in the spaceV(m), we can identify Endl(V(m)) with the matrix algebra
Matnm (K), nm = dim(V(m)). The quantitiesnm depend on a concrete form of the initial
Hecke symmetryR. In theUq(sl(2)) case we havenm = m + 1 similarly to the classical
(q = 1) case. However, for the so-callednon-quasiclassicalHecke symmetries (cf.[14])
these quantities differ drastically from the classical ones. In general the quantitynm is equal
to the coefficient attm in the development of the rational function (1− nt + t2)−1 in a
series, wheren = dim(V ) and rk(R) = 2.

Now, we pass to higher representations of the algebraL�,q. In order to construct them
explicitly we take into account thatV(m) = Λm+(V ) is the image of the projection

Pm
+ : V⊗m → V⊗m,

wherePm+ is theq-symmetrizer (a particular case ofq-analogs of the Young projectors
discussed below). Then to an arbitrary elementX ∈ Endl(V ) we assign the elementX(m) ∈
Endl(V(m)) by the following rule

X(m) � g = q1−m[m]qP
m
+ (X(1) � g), ∀ g ∈ Λm

+(V ). (2.14)

HereX(1) = X ⊗ id(m−1) and [m]q = (qm − q−m)/(q − q−1) is theq-analog of the integer
m. Note that the map

∆m : Endl(V ) → Endl(V(m)), X �→X(m) (2.15)

is a categorical morphism due to the structure ofPm+ . Composingπ1 with ∆m we get the
map

πm : L�,q → Endl(V(m)).

Proposition 4. The image of the left-hand side of(2.12)under the mapπm is equal to0 at
� = 1.So, we get a representation

πm : L�,q → Endl(V(m)), � = 1.

Proof. This proposition can be deduced from the paper[30]. One of the main results of
that paper consists in constructing representationsL�,q → End(V⊗m) through the basic
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representationπ1 described inProposition 2. Let us consider the maps

ρm : L�,q → End(V⊗m),

such that the matrices corresponding to the generators are defined as follows

ρ̂t
m(lji ) = πt

1(lji ) ⊗ I⊗(m−1) +
m−1∑
s=1

R−1
(s→1)[π

t
1(lji ) ⊗ I⊗(m−1)]R−1

(1→s). (2.16)

HereI is the unity matrix, the superscript t means the matrix transposition andR−1
(a→b) stands

for the following chains ofR-matrices

R−1
(a→b) =

{
R−1
a R−1

a+1 . . . R
−1
b a < b

R−1
a R−1

a−1 . . . R
−1
b a > b.

Then as was shown in[30] the mapsρm define representations of the algebraL�,q.3

The moduleV⊗m is reducible. It decomposes into a direct sum of irreducible submodules
Vν parameterized by Young tableaux corresponding to partitionsν 
 m. These submodules
are extracted by the action ofq-analogsPm

ν of Young projectors. In the case under consid-
eration we only need the projectorPm+ . Taking into account the property ofq-symmetrizer

Pm
+R−1

i = R−1
i Pm

+ = q−1Pm
+ , 1 ≤ i ≤ m − 1

and the following consequence of the definition ofq-numbers

m−1∑
s=0

q−2s = q1−m[m]q

one can easily see that the mapπm coincides withPm+ ρ̂mP
m+ . This completes the proof.�

Remark 5. If rk(R) = 2, it is easy to introduce a braided analog of the Lie bracket in the
spaceslR(V ). Taking into account the decomposition

slR(V )⊗2 = V(4) ⊕ V(2) ⊕ V(0)

we set [, ] : V(4) ⊕ V(0) → 0 and require the map [, ] : V(2) → slR(V ) to be a categorical
morphism. This requirement defines the map [, ] uniquely, up to a factor. This bracket
can be naturally extended toglR(V ) by the requirement [l, x] = 0 for anyx ∈ glR(V ). (A
q-counterpart of the Lie algebrasl(n) has been defined in[24].)

3 Note, that ifR is involutive and henceR−1 in (2.16) can be replaced byR then (2.16) becomes a direct
consequence of the coproduct (1.9) and defines the embeddings (1.10). For non-involutiveR the coproduct (1.9)
fails but formula (2.16) remains valid.
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Having introduced such a bracket, we can treat the algebraSL�,q as the universal en-
veloping algebra of the corresponding “q-Lie algebra” in a standard manner (the parameter
� depends on a normalization of the bracket). Similarly, the algebraL�,q can be treated as
the enveloping algebra ofglR(V ).

However, we prefer to work without any “q-Lie algebra” structure. Similarly to the usual
enveloping algebra, the algebraSL�,q has the following properties. It is generated by the
spaceslR(V ) (more precisely, it is the quotient of the algebraT (slR(V )) modulo an ideal
generated by some quadratic-linear terms). Moreover, its representation theory resembles
that ofU(sl(2)) and, being constructed via the maps∆m, is equivariant. This is the reason
for considering the algebraSL�,q as a proper “braided analog” of the enveloping algebra
U(sl(2)) (and similarly, the algebraL�,q is treated as the enveloping algebra ofglR(V )).

The representations of the algebraSL�,q can be easily deduced from those ofL�,q. To
construct them, we set

l � x = 0, ∀ x ∈ V(m)

and preserve prolongation (2.14) for the elements of the traceless componentslR(V ).

Proposition 6. Thus defined maps are representations of the algebraSL�,q with some
� �= 0.

We will refer to these representations of the algebraSL�,q assl-representationsand keep
the same notationπm for them:πm : SL�,q → End(V(m)).

The exact value of� in Proposition 6is not important. Given a representation ofSL�,q
with some� �= 0, we can get a representation with another� renormalizing the generators in
an appropriate way. In theUq(sl(2)) case this method of constructing representation theory
of the algebraSL�,q was suggested in[5].

Up to now we considered the “left” representations of the algebras in question but we
need also the “right” ones. Such representations are given by appropriate maps

Span(lji ) → Endr(V
∗
(m)).

Note, that we do not specify which dual space — right or left — is used in the formula
above. In fact, it is of no importance due to (iso)morphisms (2.10). The right representation
π̄m of L�,q (andSL�,q) in the spaceΛm+(V ∗

l ) is introduced in the standard way as the map
π̄m : L�,q → Endr(Λm+(V ∗

l )) given by the formula

〈g � π̄m(X), f 〉 = 〈g, πm(X) � f 〉 for any f ∈ Λm
+(V ), g ∈ Λm

+(V ∗
l ).

This construction is valid for an admissible Hecke symmetry of arbitrary rank. The case
rk(R) = 2 which we are dealing with leads to additional technical simplifications. The point
is that in this case we can equip the spaceVwith a non-degenerate bilinear formV⊗2 → K

which is a categorical morphism. Explicitly, such a bilinear form can be written as follows

〈xi, xj〉 = v−1
ij . (2.17)
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Here‖v−1
ij ‖ is the matrix inverse to‖vij‖ which is invertible as has been shown in[10].

This form allows us to identifyVwith V ∗
ε , ε = r, l and, therefore, to define representations

π̄m : L�,q → Endr(V(m)) and their sl-counterparts̄πm : SL�,q → Endr(V(m)). Similarly to
all representations considered aboveπ̄m are equivariant.

Now, we define our main object — the braided NC sphere — as a quotient ofSL�,q.

Definition 7. Let rk(R) = 2 andσ ∈ SL�,q be a nontrivial quadratic central element (e.g.,
take TrRL2, where TrR is defined in (3.9)). Fixα ∈ K. The quotientSL�,q/{σ − α} will be
calledthe braided NC sphereif � �= 0 andbraided q-commutative sphereif � = 0.

The spectral decomposition of this quotient is similar to the classical case

SL�,q
{σ − α} = ⊕iV(2i).

Here the parameterα is assumed to be generic. Below we consider some polynomial iden-
tities (called Cayley–Hamilton) whose coefficients depend onα. Demanding their roots to
be distinct, we get more concrete restrictions onα. In the particular case of the quantum
sphere the elementσ will be specified inSection 4.

3. Index via braided Casimir element

In [13] we suggested a way of constructing a family of projective modules over the RE
algebra (modified or not) by means of the Cayley–Hamilton identity. As was shown in[12],
the matrixL satisfying (2.12) with any even Hecke symmetryRobeys a polynomial relation

Lp +
p−1∑
i=0

σp−i(L)Li = 0, p = rk(R), (3.1)

where the coefficientsσi(L) belong to the centerZ(L�,q) of the algebraL�,q. This relation
is calledthe Cayley–Hamilton identity.

Let us consider the quotient algebraLχ
�,q

= L�,q/{Iχ}, where{Iχ} is the ideal generated
by the elements

z − χ(z), z ∈ Z(L�,q) (3.2)

and

χ : Z(L�,q) → K

is a character ofZ(L�,q). After turning to the quotient algebraLχ
�,q

, the coefficients in (3.1)
become numerical

Lp +
p−1∑
i=0

aiL
i = 0, ai = χ(σp−i(L)) (3.3)

(in a particular caseχ(l) = 0 we obtain a quotient ofSL�,q denoted asSLχ
�,q

).
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Assuming the roots of the equation

µp +
p−1∑
i=0

aiµ
i = 0

to be distinct, one can introducep idempotents in the usual way

ei =
∏
j �=i

L − µj

µi − µj

, 0 ≤ i ≤ p − 1. (3.4)

If no characterχ is fixed, then the rootsµi can be treated as elements of the algebraic closure
Z(L�,q) of the centerZ(L�,q) (or Z(SL�,q) if χ(l) = 0).

Besides the basic Cayley–Hamilton identity (3.1), we are interested in the so-called
derivedones which are valid for some extensions of the matrixL [13]. A regular way of in-
troducing these extensions can be realized via “a (split) braided Casimir element”. Note that
a non-braided (q = 1) version of split Casimir element was used in order to get characteristic
identities related to Lie algebras (cf.[8] and the references therein).4 Recently, it appeared in
a close context in[22,28]where the so-called family algebras were introduced and studied.

Thebraided(split) Casimir elementis defined to be

Cas=
∑
i,j

l
j
i ⊗ hij =

∑
i,j

l
j
i ⊗ l kj C

i
k ∈ L�,q ⊗ L�,q. (3.5)

Its crucial property is that the map

K→ L�,q ⊗ L�,q, 1 �→ Cas (3.6)

belongs to Mor(C). Therefore,Cas is a central element of the categoryC in the following
sense

(Cas⊗ x) � R̄ = x ⊗ Cas, ∀ x ∈ U, ∀U ∈ Ob(C)

with R̄ defined in the previous section. For the proof it suffices to observe that the above
relation is obviously valid for the unit ofK, hence, forCas due (3.6) is a categorical
morphism.

From now on we shall deal with the case rk(R) = 2. In order to get the initial matrixL
as well as its higher analogs from the braided Casimir element, one should replacehij ∈
Endl(V ) in (3.5) with their imagesπm(hij) in matrix realization.

Namely, consider the map

π(2)
m = id ⊗ πm : L�,q ⊗ L�,q → L�,q ⊗ End(V(m))

= L�,q ⊗ Matnm (K) = Matnm (L�,q)

4 Note that such characteristic identities were intensively studied by Adelaide school. For enveloping algebras
these identities can be thought of as specializations of the CH ones (and are in fact equivalent to them). Also, we
would like to mention the papers[9] where characteristic identities are obtained for QG and[20] where a version
of the CH identifies is given for their dual objects (“RTT algebras”).
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and introduce the matrixL(m) in the following way

Lt
(m) = π(2)

m (Cas),

whereLt stands for the transposed matrix.
Now, define the powers of the elementsπ

(2)
m (Cas) as follows

(π(2)
m (Cas))k = l

j1
i1
. . . l

jk
ik

⊗ πm(hikjk ) . . . πm(hi1j1
) ∈ L�,q ⊗ End(V(m)). (3.7)

In particular, form = 1 we have

(π(2)
1 (Cas))2 = lai l

j
a ⊗ hij,

(π(2)
1 (Cas))3 = lai l

b
al
j

b ⊗ hij ∈ L�,q ⊗ End(V ), etc. (3.8)

In more detail, the square (π
(2)
1 (Cas))2 arises from the following chain

l
j1
i1

⊗ h
i1
j1

�→ l
j1
i1

⊗ 1 ⊗ h
i1
j1

(3.6)�→ l
j1
i1
l
j2
i2

⊗ h
i2
j2
h
i1
j1

�→ lai1l
j2
a ⊗ h

i1
j2

and similarly for other powers.
It is easy to see that the element

(π(2)
m (Cas))k ∈ L�,q ⊗ End(V(m)) = L�,q ⊗ Matnm (K) = Matnm (L�,q)

is nothing but (Lk
(m))

t. Remark, that thoughLt · Lt �= (L2)t, we apply the transposition

operator to the matrix (L(m))k as a whole and get (π(2)
m (Cas))k. This implies that the matrix

L(m) and the elementπ(2)
m (Cas) whose powers are defined by (3.7) satisfy the same CH

identity.
Now, we want to define a map which is aq-analog of the trace Matnm (L�,q) → L�,q.

In general such a map depends on the way of realizing the algebra Matnm (A) either as
L�,q ⊗ Matnm (K) or as Matnm (K) ⊗ L�,q.

We realize the algebra Matnm (L�,q) asL�,q ⊗ Matnm (K) and define a map TrR in the
following way

TrR : L�,q ⊗ Matnm (K) → L�,q, TrR
def= id ⊗ trR, (3.9)

where trR is the categorical trace (2.9) and the space Matnm (K) is identified with Endl(V(m)).
In particular, we have

TrRL = TrRπ
(2)
1 (Cas) = l

j
i ⊗ trR(hij) = l

j
i C

i
j = l.

In theUq(sl(n)) case the trace TrRL coincides with thequantum trace(cf. [7]) which plays
an important role in the theory of the RE algebra.

Let us summarize the above construction once more. Given an admissible Hecke sym-
metryR, we introduce the categoryC as was shortly described inSection 2and construct the
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morphism (categorical trace) trR : Endl(U) → K, U ∈ Ob(C) which is defined byR. Then
with the categoryC we associate the algebraL�,q defined by system (2.12) and use this
categorical trace in order to define the map TrR sendingmatriceswith entries fromL�,q
treated as elements ofL�,q ⊗ Endl(V(m)) = L�,q ⊗ Matnm (K) into the algebraL�,q.

As we have said above, the matricesL(m) also satisfy Cayley–Hamilton identities which
we call the derived ones. Namely, there exists a monic polynomialCH(m)(t) of degreem + 1
(recall that rk(R) = 2) whose coefficients belong toZ(L�,q) such that

CH(m)(L(m)) = 0, m = 1,2, . . . (3.10)

Pass now to the algebraLχ
�,q

(see (3.2)) and consider the imageCHχ
(m)(t) of the polynomial

CH(m)(t) in this algebra. Relation (3.10) transforms into a corresponding relation in the
algebraLχ

�,q
:

CHχ
(m)(L(m)) = 0, m = 1,2, . . . (3.11)

where the coefficients of the polynomialCHχ
(m)(t) are numerical and the matrixL(m) is

treated as an element ofLχ
�,q

⊗ Matnm (K). An explicit form ofCHχ
(m)(L(m)) is determined

by the following proposition.

Proposition 8. Letµ0 andµ1 be the roots of the polynomialCH
χ
(1)(t) (3.3) (at p = 2 this

polynomial is quadratic). Then for eachm ≥ 2 the polynomialCHχ
(m)(t) is of the degree

(m + 1) and its rootsµi(m) are given by the formula

qm−1µi(m) = q−i[m − i]qµ0 + qi−m[i]qµ1 + [i]q[m − i]q�,

i = 0,1, . . . , m. (3.12)

Note, that for the standard NC (fuzzy) sphere this formula can be proved via the coprod-
uct (1.9) in the algebrasl(2) (cf. [28]). However, this method is not valid for the algebra
L�,q, q �= 1 and the proof (3.12) becomes more complicated. Such a proof will be given
in [15].

Assuming the rootsµi(m),0 ≤ i ≤ m, of the polynomialCHχ
(m)(t)(m ≥ 2) to be dis-

tinct we can introduce idempotentsei(m) ∈ Lχ
�,q

⊗ Endl(V(m)) analogously to (3.4) (to get
uniform notations, we putei = ei(1)).

If upon fixing somem ≥ 2 one multiplies (3.11) byLn
(m), n ≥ 0, and then applies TrR to

the resulting equalities, one obtains a recurrence forαn(m) = TrRLn
(m), n ≥ 0. The general

solution for such a recurrence is of the form

αn(m) =
m∑
i=0

µn
i (m)di(m),

where the quantitiesdi(m) are defined by the initial conditions, i.e., by the values
TrRLr

(m), r = 0,1, . . . , m. Thus, we have the following proposition.
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Proposition 9. If the rootsµi(m) of the polynomialCHχ
(m)(t) are all distinct, then there

existdi(m) such that

TrRL
n
(m) =

m∑
i=0

µn
i (m)di(m), n = 0,1,2, . . .

The coefficientsdi(m) in the above expansion are functions in the rootsµi(m). These
functions are singular if there are coinciding roots. If we treatµi(m) as elements ofZ(L�,q)
(or Z(SL�,q)), then the quantitiesdi(m) become elements of the field of fractions of the
algebraL�,q (or SL�,q).

Consider a representation̄πk : L�,q → Endr(V(k)) of the algebraL�,q (orSL�,q) defined
at the end ofSection 2. It is easy to see that for a genericq the mapπ̄k is surjective and
hence for anyz ∈ Z(L�,q) the operator̄πk(z) is scalar

π̄k(z) = ak(z)id, ak(z) ∈ K, ∀ z ∈ Z(L�,q).

Therefore, we can define a characterχk : Z(L�,q) → K in the following way

χk(z) = ak(z), ∀ z ∈ Z(L�,q).

Below we shall use the special notation for the Cayley–Hamilton polynomial in (3.11) taken
at the characterχk

CHk,m(t) = CHχ
(m)|χ=χk .

Also introduce another useful notation

Lt
(k,m) = π̄k(l

j
i ) ⊗ πm(hij). (3.13)

Being the image of the matrixLt
(m) under the representation̄πk, the above matrixLt

(k,m)

is treated as an element of Matnk (Matnm (K)). From the other hand,Lt
(k,m) can also be

considered as an operator acting in the spaceV(k) ⊗ V(m). Indeed, if in (3.13) we treat̄πk(l
j
i )

andπm(hij) as operators we get an operator acting in the spaceV(k) ⊗ V(m). More precisely,
we put the Casimir elementCasbetween the factorsV(k) andV(m) and apply it to these
spaces via the representationsπ̄k andπm, respectively. This operator generated byCasand
acting in the productV(k) ⊗ V(m) will be denotedCas(k,m).

It is evident that the matrixL(k,m) satisfies the Cayley–Hamilton identity

CHk,m(L(k,m)) = 0 (3.14)

which is a specialization of (3.11) withχ = χk.
If the roots of the polynomialCH(k,m)(t) are distinct, one can introduce idempotents

ei(k,m) similarly to ei(m).
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Applying the morphism

tr = tr(1)
R ⊗ tr(2)

R : Endr(V(k)) ⊗ Endl(V(m)) → K

to all powers of the matrixL(k,m) and using the Cayley–Hamilton identity for this matrix
we can prove the following proposition (similarly toProposition 9).

Proposition 10. Let µi(k,m) be all the roots of the polynomialCH(k,m)(t). Let them be
distinct. Then there exist numbersdi(k,m),0 ≤ i ≤ m such that

trLn
(k,m) =

m∑
i=0

µi(k,m)ndi(k,m), n = 0,1,2, . . .

They are uniquely defined by the values oftr Ll
(k,m), l = 0, . . . , m.

Definition 11. The quantitiesµi(m) anddi(m) (or µi(k,m) anddi(k,m)) will be called,
respectively,eigenvaluesandbraidedmultiplicities of the matrixL(m) (or L(k,m)).

Corollary 12. Letf (t) be a polynomial(or a convergent series) in t. Then

TrRf (L(m)) =
∑

f (µi(m))di(m), tr f (L(k,m)) =
∑

f (µi(k,m))di(k,m).

In particular, taking asf the polynomial in the right hand side of (3.4) and its higher
analogs we get the following proposition.

Proposition 13. If the eigenvaluesµi(m) (resp.µi(k,m)) are distinct, then

TrRei(m) = di(m), (3.15)

tr ei(k,m) = di(k,m). (3.16)

Definition 14. The quantity tr ei(k,m) will be called the q-index and denoted
Ind (ei(m), π̄k).

Note that we use this term by analogy with a widely recognized term “q-trace” (which is
nothing but a categorical trace corresponding to a non-involutive braiding) or “q-dimension”.

Remark 15. Multiplying the trace by a factor results in a modification of the eigenvalues
µi but does not affect the multiplicitiesdi. We are only interested in the latter quantities
and therefore can disregard the normalization of the trace. Similarly, the multiplicitiesdi
are stable under changes of the numeric factor in (2.14). However, only with the factor
q1−m[m]q in the definition ofX(m) we get (3.12).

Remark 16. Similarly to[22,28], in theUq(sl(2)) case we deal with elements from (L�,q ⊗
End(V(m)))Uq(sl(2)), i.e., we considerUq(sl(2))-invariant elements of this tensor product.
Introducing a product in the family of such elements similarly to the powers of the Casimir
element we get an algebra which can be considered as aq-analog of the Kirillov’s family
algebras (cf.[22,28]).
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Taking into account thatei(m) ∈ Lχ
�,q

⊗ Endl(V(m)) and puttingχ = χk we get

ei(k,m) = π̄
(1)
k (ei(m)). (3.17)

Finally, we have

Ind (ei(m), π̄k) = tr ei(k,m) = tr π̄(1)
k (ei(m)) = trR π̄k(TrR ei(m)). (3.18)

This justifies our treatment of the quantitytr ei(k,m) as aq-analog of the NC index. We
would like to emphasize that (3.17) and (3.18) are valid provided that the eigenvalues
µi(k,m) are pairwise distinct.

Remark 17. Speaking about the braided sphere, we are actually dealing with a family of
such spheres depending on the value of the characterχ = χk. So, if we treat the entries of
the idempotentei(m) as elements ofLχ

�,q
theq-index Ind (ei(m), π̄k) is well-defined only

for a special value ofχ depending onk.

Thus, due to (3.16) and (3.18) the computation of ourq-index reduces to that of the
braided multiplicitydi(k,m). Now we will show how the latter can be computed by means
of the operatorsCas(k,m) defined above as images of the braided Casimir element:

Cas(k,m) : V(k) ⊗ V(m) → V(k) ⊗ V(m).

Since map (3.6) is a categorical morphism and the representationsπ̄k andπm are equivariant,
we can conclude that each operatorCas(k,m) belongs to Mor(C). This implies that it is scalar
on any simple component of the productV(k) ⊗ V(m).

Assumingk ≥ m one gets the following decomposition

V(k) ⊗ V(m) = V(k+m) ⊕ V(k+m−2) ⊕ · · · ⊕ V(k−m).

Here we use that fact that the Grothendieck (semi)ring of the category in question is iso-
morphic to that ofsl(2)-modules. We compute the trace of the operatorCas(k,m) using this
decomposition. However, before doing so we would like to make the following remark.

Having fixed an objectU ∈ Ob(C), consider an arbitrary linear operatorF : U → U.
What is its trace? The answer depends on the way this operator is realized. ToF, we can
assign two elements:Fl ∈ Endl(U) andFr ∈ Endr(U). In general, trRFl �= trRFr. However,
under the additional assumptionF ∈ Mor(C), the operatorF should be scalar on any simple
component ofU. For such an operator the categorical trace is uniquely defined:

trRF
def= trR Fl = trR Fr.

This follows from the trivial fact that trR id is the same for the right and left realization of
the identity operator. To sum up, if a linear operator belongs to Mor(C), then it is scalar on
simple objects and its categorical trace is uniquely defined. This observation enables us to
calculatedi(k,m).
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Let µi be the eigenvalue ofCas(k,m) corresponding to the componentV(k+m−2i) (0 ≤
i ≤ m). Then we have

trRCasn(k,m) =
m∑
i=0

µn
i di, wheredi = dimR(V(k+m−2i)). (3.19)

Here the eigenvaluesµi are numbered according to decreasing spin (we use this term by
analogy with the classical case: the spin of the spaceV(i) equalsi/2). Since dimR(V(m)) =
[m + 1]q in C, we have the final result.

Proposition 18. Let k ≥ m and let the eigenvaluesµi(k,m) be all distinct. Then by ar-
ranging the eigenvaluesµi according to decreasing spin we have

Ind (ei(m), π̄k) = [m + k − 2i + 1]q, 0 ≤ i ≤ m. (3.20)

Proof. Under the hypothesis formulae (3.15)–(3.18) are valid and, therefore, the family of
multiplicitiesdi(k,m) coincides with that ofdi from (3.19). �

In the next section, we will see that ifk ≥ m andπ̄k are sl-representations in theUq(sl(2))
case, then the eigenvaluesµi(k,m) are automatically distinct.

In the case of the standard NC (fuzzy) sphere (i.e.,q = 1, � �= 0) we get

Ind (ei(m), π̄k) = m + k − 2i + 1

which proves the formula given in[14].

4. Example: quantum NC sphere

Let us consider a particular case of the previous construction, namely, thequantum
NC sphere. In the framework of our general approach we will introduce it using only the
corresponding Hecke symmetry, without any QG.

LetVbe a two-dimensional vector space with a fixed basis{x1, x2}. Represent the Hecke
symmetry by the following matrix

R =



q 0 0 0
0 λ 1 0
0 1 0 0
0 0 0 q


 , λ = q − q−1.

The matricesB andC can be computed directly and after multiplying byq2 (which is just
renormalization for the future convenience) take the form

B =
(
q 0
0 q−1

)
, C =

(
q−1 0
0 q

)
.
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We can choose the associated determinant asv = x1 ⊗ x2 − qx2 ⊗ x1. Thus, we have

‖vij‖ =
(
v11 v12

v21 v22

)
=

(
0 1

−q 0

)
, ‖vij‖−1 =

(
0 −q−1

1 0

)
.

Set

l11 = a, l21 = b, l 1
2 = c, l22 = d.

In these generators the mRE algebra given by (2.12) takes the form

qab − q−1ba = �b, q(bc − cb) = (λa − �)(d − a), qca − q−1ac = �c,
q(cd − dc) = c(λa − �), ad − da = 0, q(db − bd) = (λa − �)b. (4.1)

Represent the matrixL as suggested above

Lt = l
j
i ⊗ π1(hij) = a ⊗ π1(h1

1) + b ⊗ π1(h1
2) + c ⊗ π1(h2

1) + d ⊗ π1(h2
2)

=
(
a c

b d

)
.

(Recall thatπ1(hji ) � xk = δ
j

kxi.) Taking into account (3.9) we find

l = TrRL = l
j
i C

i
j = q−1a + qd.

It is straightforward to check thatl is a central element in the mRE algebra. Now, let us
consider the traceless componentV(2) = slR(V ) of the space

glR(V ) = span(a, b, c, d).

For a basis inslR(V ) we take{b, c, g = a − d}. Being reduced onto the traceless component
of glR(V ), system (4.1) becomes

q2gb − bg = �(q + q−1)b, gc − q2cg = −�(q + q−1)c,

(q2 + 1)(bc − cb) + (q2 − 1)g2 = �(q + q−1)g. (4.2)

Let us explicitly write the vector (two-dimensional) representations ofSL�,q generated
by (4.2). Written respectively in the bases{x1, x2} and{x1

r , x
2
r } the representationsπ1 and

π̄1 read on the generators:

π1(g) = κ

(
q 0
0 −q−1

)
, π1(b) = κ

(
0 q−1

0 0

)
, π1(c) = κ

(
0 0
q 0

)
,

κ ≡ �q
2 + 1

q4 + 1
, π̄1(g) = κ

(
q 0
0 −q−1

)
, π̄1(b) = κ

(
0 q

0 0

)
,
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π̄1(c) = κ

(
0 0

q−1 0

)
.

In order to get the quantum NC sphere we fix a value of a nontrivial quadratic central element.
As such an element we take the coefficientσ entering the Cayley–Hamilton identity (4.3)
below. Then thequantum sphereis obtained as the quotient of algebra (4.2) modulo the
ideal{σ − α}, for someα ∈ K.

An explicit form of the matricesL andL(2) for SL�,q is as follows. Taking the sl-
representationπ2 to constructL(2) we get

L = L(1) =
(
q[2]−1

q g b

c −q−1[2]−1
q g

)
,

L(2) = q−1


 qg [2]qb 0
q−1c (q − q−1)g b

0 q[2]qc −q−1g




(the latter matrix is calculated in the basis{x2
1, qx1x2 + x2x1, x

2
2}).

One can directly check that the matrixL satisfies the Cayley–Hamilton identity of the
form

L2 − q−1
�L + σ id = 0, (4.3)

where

σ = −[2]−1
q TrRL

2 = −[2]−1
q ([2]−1

q g2 + q−1bc + qcb) ∈ Z(SL�,q). (4.4)

The corresponding identity for the matrixL(2) reads

L3
(2) − 2�

[2]q
q2

L2
(2) + [2]2q

q2
(q−2
�

2 + σ)L(2) − � [2]3q
q4

σ = 0.

This was shown in[13] for a different normalization ofL(2).
So, settingσ = α ∈ K we come to the equation forL with numerical coefficients

L2 − q−1
�L + α id = 0

with the roots

µ0 = µ0(1) = 1
2(q−1

�−
√
q−2�2 − 4α),

µ1 = µ1(1) = 1
2(q−1

�+
√
q−2�2 − 4α).

The corresponding multiplicities (which coincide with TrRei(1) due to (3.15)) are

d0(1) = TrRe0(1) = TrR(L − µ1 id)(µ0 − µ1)−1 = [2]q
2

+ [2]q�

2
√
�2 − 4αq2

,

d1(1) = TrRe1(1) = TrR(L − µ0 id)(µ1 − µ0)−1 = [2]q
2

− [2]q�

2
√
�2 − 4αq2

.
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As for the matrixL(2), its eigenvalues can be found by means of (3.12) withm = 2.
Our next aim is to compute the value ofα corresponding to the representationπ̄k or, in

other words, the value ofχk(σ). Clearly, this value does not change if we replaceπ̄k byπk.
Such a value (for a Casimir element being a multiple of (4.4)) was computed in[5]. Using
that result we get

α = χk(σ) = − �
2[k]q[k + 2]q

q2([k + 2]q − [k]q)2
. (4.5)

This implies that

√
q−2�2 − 4α = ±q−1[2]q[k + 1]q

[k + 2]q − [k]q
�. (4.6)

Choosing the positive sign in the right hand side of the formula above we get

µ0(k,1) = −q−1
�[k]q

[k + 2]q − [k]q
, µ1(k,1) = q−1

�[k + 2]q
[k + 2]q − [k]q

,

d0(k,1) = [k + 2]q, d1(k,1) = [k]q.

Note that the eigenvaluesµi(k,1), i = 0,1, are distinct for allk ≥ 1.

Proposition 19. On the quantum NC sphere we have

di(m) = qm−2i + q−m+2i

2
+ [m − 2i]q[2]q�q−1

2
√
�2 − 4αq2

, 0 ≤ i ≤ m.

Proof. Suffice it to check that

π̄k(di(m))[k + 1]q = [k + m + 1 − 2i]q.

It can be easily done with the help of the following formula

[k + m]q + [k − m]q = kq(q
m + q−m). �

In fact, this proposition is valid for any braided sphere since (4.5) can be shown to be
true for any admissible Hecke symmetry of rank 2. Also, note that forq = 1 we get formula
(32) from[22].
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5. Concluding remarks

1. First of all, we want to emphasize that the RE algebras (especially in theUq(sl(n)) case)
play a very important role in integrable system theory. So, it is very interesting to study
them fromK-theoretical viewpoint. However, since these algebras (and their modified
counterparts) are well defined for non-quasiclassical braiding as well, a natural problem
arises of comparing the NC index for “quasiclassical algebras” and “non-quasiclassical
ones”. The crucial difference between these cases can be seen on the level of the matrices
L(2), L(3), . . . and related idempotents: they depend drastically from a concrete form of
the initial Hecke symmetryR. However, the resultingq-index does not depend on it. It
can be explained by the properties of the categorical trace: though the matricesB andC
and their extensions coming in the formulae for categorical traces depend on a concrete
form ofR, the categorical dimension (=categorical trace applied to the identity operator)
does not (cf.[11]). Thus, essentially, we only have two cases:q = 1 andq �= 1. The NC
index corresponding to the caseq �= 1 is calledq-index similarly to the well-recognized
terms “q-trace” and “q-dimension”.

2. In contrast with[27] we do not define any involution in the algebras in question. As a
consequence, we do not use any∗-operation in our representation theory either. Never-
theless, in theUq(sl(2)) case it is not difficult to introduce such an involution operator∗
in the quantum NC sphere (� andq are assumed to be real)

∗b = c, ∗c = b, ∗g = g

and extending it on the whole algebra via the property∗(x y) = (∗y) (∗x).
Moreover, such an involution exists for any mRE algebra with the so-called real type

R (cf. [25]). However, considered as an operator in Endε(V ), this involution is not a
categorical morphism since the Euclidean pairing in the spaceV is not. (Up to a factor,
the only pairing inV which is a categorical morphism is given by (2.17).) So, such
an involution is somewhat useless for constructing an equivariant representation theory
(also, cf.[5] for a discussion). Emphasize a very important property of our representation
theory: in theUq(sl(2)) case atq → 1 we getSL(2)-equivariant representation theory.

There is another inconvenience of the involution under discussion. It does not allow
to get the quantum sphere as anR-algebra. We refer the reader to[3] where the equato-
rial Podlés sphere is explicitly presented by a system of equations containing complex
numbers. Consequently, the corresponding quotient algebra cannot be considered as an
R-one in contrast with the coordinate ring of the usual sphere or the NC (fuzzy) one
(cf. [14]).

3. Point out a crucial property of the pairing (1.1): it is in some sense “equivariant”. This
means that all maps in the chain

L�,q ⊗ End(V(m))
TrR→ L�,q

π̄k→ End(V(k))
trR→ K

are categorical morphisms (in theUq(sl(2)) case they commute with theUq(sl(2)) action).
Emphasize that in theUq(sl(2)) case the QGUq(sl(2)) acts on both factors inL�,q ⊗
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End(V(m)) via the QG coproduct. Thus, the idempotentsei(m), being realized as elements
of L�,q ⊗ End(V(m)), become invariant (seeRemark 16). Namely, the fact that the space
End(V(m)) is equipped with an action of this QG urges us to apply thecategoricaltrace
to the second factor ofL�,q ⊗ End(V(m)) product instead of the usual one. By contrast,
in [16] there was not defined any action ofUq(sl(2)) on the corresponding idempotents
as a whole.

4. Restricting ourselves to theUq(sl(2)) case, let us discuss a geometrical meaning of the
NC index and itsq-analog. Settingn = m − 2i we can represent (3.20) in the form

Ind (ei(m), π̄k) = [n + k + 1]q. (5.1)

Thus, theq-index depends only onn andk and therefore the idempotentsei(m) and
ei+1(m + 2) give rise to the sameq-index, being paired with any representationπ̄k (k
must be sufficiently large).

Remark, that in the classical limit (q = 1,� = 0) the idempotentsei(m) andei+1(m +
2) are equivalent (for the definition cf.[29]) and therefore belong to the same class inK0.
We do not know whether these idempotents are equivalent in the conventional sense for
the quantum algebras. (The problem of their equivalence seems to be difficult.) However,
as follows fromProposition 19.

TrRei(m) = TrRei+1(m + 2), 0 ≤ i ≤ m, ∀m ≥ 0. (5.2)

The modules for which the corresponding idempotents have equal traces TrR will be
called trace-equivalent. It is easy to see that, for a genericq, the modules from the
sequence

e(0), e0(m), em(m), m = 1,2, . . .

are not trace-equivalent. Thus, the set of classes of trace-equivalent modules is labelled
byn = m − 2i ∈ Z. This looks like the Picard group of the usual sphere. This gives one
more reason to use the categorical trace since if one replaced TrR by the usual trace,
then (5.2) would be wrong.

Observe, that for the usual sphere all irreducible representations of its coordinate ring
are one-dimensional and the pairing of such a representation with any idempotentei(m)
is always equal to 1. Thus, NC index for line bundles on the usual sphere is meaningless.
Instead, we consider the Euler characteristic of line bundles on it. In order to do so we
realize the usual sphere as a complex projective variety and consider the holomorphic line
bundlesO(n), n ∈ Z. Then the bundlesO(n) andO(−n), n ≥ 0, become analogs of our
modules corresponding to the idempotentse0(n), en(n). Which line bundle corresponds
to which projective module depends on the complex structure on the sphere (in our
setting the result depends on the sign of the root in (4.6)).

The Euler characteristic of the bundleO(n) is defined to be

χ(O(n)) = dim H0(O(n)) − dim H1(O(n))

(for n ≥ 0 it gives the dimension of the space of global holomorphic sections). Due to
the Riemann–Roch theorem we haveχ(O(n)) = n + 1 which coincides with the above
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quantity [n + k + 1]q at k = 0 andq = 1. So, forq = 1 we consider the index (5.1)
as a NC analog of the Euler characteristic of the class of the idempotentsei(m) with
n = m − 2i. However, in contrast with the commutative case this NC index depends
on two arguments:n labelling classes of trace-equivalent idempotents andk labelling
classes fromK0.

Similarly, forq �= 1 and� �= 0 theq-index depends on two parameters and is given by
q-counterpart of the integern + k + 1. At� = 0 the algebraL�,q does not have a meaning
of an enveloping algebra and we consider neither its representations norq-index for it.
In this case we take the usual sphere as a pattern. So, we consider the quantity [n + 1]q,
i.e., the specialization of theq-index atk = 0, as aq-analog of the Euler characteristic.
To be more precise, we should call the quantity (5.1) the NCq-index considering its
specialization atk = 0 as “commutativeq-index” or “q-Euler characteristic” of theq-
commutative sphere (seeDefinition 7).

5. The scheme presented in this paper is valid for NCq-analogs of semisimple orbits (i.e.,
orbits of semisimple elements) insl(n)∗ which are not necessarily generic ones. These
analogs arising from Hecke symmetries of higher rank can be defined (at least for the
Uq(sl(n)) case) by methods of the paper[4]. Thus, the “easy part”, namely, the fact that
theq-index is nothing but aq-dimension of a component in some tensor product, can be
straightforwardly generalized. The proof of an analog (3.12) is, however, much harder.
Nevertheless, our low dimensional computations make the following conjecture very
plausible.

Conjecture 20. Let µi1 ≤ i ≤ p be roots of the polynomialCHχ
(1)(t) (3.3).Then for

∀m ≥ 2 the degree of the polynomialCHχ
(m)(t) reads

deg(CHχ
(m)(t)) =

(
m + p − 1

m

)

and its roots are given by the formula

qm−1µk1...kp (m) =
p∑
i=1

[ki]q
qm−ki

µi + ξp(k1, . . . , kp)�,

ki ≥ 0, k1 + · · · + kp = m, (5.3)

whereξp(k1, . . . , kp) is the symmetric function defined as follows

ξp(k1, . . . , kp) =
p∑

s=2

qk1+k2+···+ks−m[ks]q[k1 + k2 + · · · + ks−1]q.

6. It is worth emphasizing again, that in theUq(sl(2)) case we have a two parameter de-
formation of the usual sphere (more precisely, of its complexification). Let us discuss
the classical analog of this two parameter family. More generally, we consider Poisson
structures on any semisimple orbit insl(n)∗ (or su(n)∗). On such an orbit there exists a
family of the so-called Poisson-Lie structures (cf.[6]). Their quantization (in general,
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formal) leads to algebras covariant with respect toUq(sl(n)). But in this family only
one bracket (up to a numerical factor) is compatible with the Kirillov one. Namely, the
simultaneous quantization of the corresponding “Poisson pencil” gives rise to the quan-
tum algebras which are appropriate quotients ofSL�,q (the reader is referred to[13] for
detail).

However, the properties of quantum algebras arising from the Kirillov bracket alone
and those arising from the above pencil are different. The Kirillov structure is symplectic
and for it there exists an invariant (Liouville) measure. It gives rise to the classical trace in
the corresponding quantum algebra. On the contrary, the other brackets from the Poisson
pencil are not symplectic and they have no invariant measure. Their quantization leads
to the algebras with trace but this trace is braided. It is just these algebras and their
“non-quasiclassical” analogs (in a particular case rk(R) = 2) which are the main objects
of the present paper.

Also note, that the Poisson-Lie structures non-compatible with the Kirillov bracket
give rise to one-parameter quantum algebras. It seems that for these algebras there is no
reasonable way to construct meaningful projective modules. On the usual sphere such
structures do not exist due to its low dimension.
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